Skip to main content
Log in

Batteries and charge storage devices based on electronically conducting polymers

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Strong interest in energy generation and storage has yielded excellent progress on organic based solar cells, and there is also a strong desire for equivalent advancement in polymer-based charge storage devices such as batteries and super-capacitors. Despite extensive research on electronically conducting polymers including polypyrrole, polythiophene, and polyaniline, limitations to the maximum doping density and chemical stability had been considered a significant restriction on the development of polymer batteries. Recent work appears to show a meaningful increase in the upper bound of the maximum density from 0.5 to 1.0 electrons per monomer depending on the structure, processing, and ionic species used in charging and discharging of the polymers. Several recent examples have also implied that more stable, reversible charge-discharge cycling is being observed in n-doped polymers. These observations suggest that the performance metrics of this class of electronically conducting polymer may ultimately reach the levels required for practical battery applications. Further efforts are essential to perfect practical large-scale electrode fabrication to move toward greater compatibility in the methods used for solar cells and those used in producing batteries. A better understanding must also be developed to elucidate the effects of molecular structure and polymer architecture on these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DOE Basic research needs for electrical energy storage, Bethesda, MD April 2-4 2007 Available at: http://www.sc.doe.gov/bes/reports/files/EES_rpt.pdf.bes/reports/files/EES_rpt.pdf.

    Google Scholar 

  2. G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater.4, (11) 864 (2005)

    Article  CAS  Google Scholar 

  3. M. Gratzel: Dye-sensitized solid-state heterojunction solar cells. MRS Bull.30, (1) 23 (2005)

    Article  CAS  Google Scholar 

  4. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger: Polymer photovoltaic cells—Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science270, (5243) 1789 (1995)

    Article  CAS  Google Scholar 

  5. Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. McCulloch, C.S. Ha, M. Ree: A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: Fullerene solar cells. Nat. Mater.5, (3) 197 (2006)

    Article  CAS  Google Scholar 

  6. C.J. Brabec, J.R. Durrant: Solution-processed organic solar cells. MRS Bull.33, (7) 670 (2008)

    Article  CAS  Google Scholar 

  7. Y. Wu: Solarmer breaks organic solar PV cell conversion efficiency record www.PV-tech.org 2009

    Google Scholar 

  8. C.J. Brabec, F. Padinger, J.C. Hummelen, R.A.J. Janssen, N.S. Sariciftci: Realization of large area flexible fullerene—Conjugated polymer photocells: A route to plastic solar cells. Synth. Met.102, (1-3) 861 (1999)

    Article  CAS  Google Scholar 

  9. S.E. Shaheen, R. Radspinner, N. Peyghambarian, G.E. Jabbour: Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett.79, (18) 2996 (2001)

    Article  CAS  Google Scholar 

  10. J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes: Efficient photodiodes from interpenetrating polymer networks. Nature376, (6540) 498 (1995)

    Article  CAS  Google Scholar 

  11. W.Z. Cai, X. Gong, Y. Cao: Polymer solar cells: Recent development and possible routes for improvement in the performance. Sol. Energy Mater. Sol. Cells94, (2) 114 (2010)

    Article  CAS  Google Scholar 

  12. Konarka http://www.konarka.com/index.php/power-plastic/power-plastic-applications/index.php/power-plastic/power-plastic-applications/ and http://www.g24i.com/

  13. H. Shirakawa, E.J. Louis, A.G. Macdiarmid, C.K. Chiang, A.J. Heeger: Synthesis of electrically conducting organic polymers—Halogen derivatives of polyacetylene, (CH)X. J. Chem. Soc. Chem. Commun.578 (1977)

    Google Scholar 

  14. J. Roncali: Electrogenerated functional conjugated polymers as advanced electrode materials. J. Mater. Chem.9, (9) 1875 (1999)

    Article  CAS  Google Scholar 

  15. Y. Gofer, H. Sarker, J.G. Killian, J. Giaccai, T.O. Poehler, P.C. Searson: Fabrication of an all-polymer battery based on derivatized polythiophenes. Biomed. Instrum. Technol.3233 (1998)

    CAS  Google Scholar 

  16. N. Furukawa, K. Nishio Lithium batteries with polymer electrodesedited by B. Scrosati (Chapman and Hall, London 1993)151–181

    Google Scholar 

  17. B.E. Conway: Transition from supercapacitor to battery behavior in electrochemical energy-storage. J. Electrochem. Soc.138, (6) 1539 (1991)

    Article  CAS  Google Scholar 

  18. H.Y. Lee, J.B. Goodenough: Supercapacitor behavior with KCl electrolyte. J. Solid State Chem.144, (1) 220 (1999)

    Article  CAS  Google Scholar 

  19. A. Rudge, I. Raistrick, S. Gottesfeld, P. Ferraris: A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochim. Acta39273 (1994)

    Article  CAS  Google Scholar 

  20. M. Mastragostino, R. Paraventi, A. Zanelli: Supercapacitors based on composite polymer electrodes. J. Electrochem. Soc.147, (9) 3167 (2000)

    Article  CAS  Google Scholar 

  21. A.G. Pandolfo, A.F. Hollenkamp: Carbon properties and their role in supercapacitors. J. Power Sources157, (1) 11 (2006)

    Article  CAS  Google Scholar 

  22. Y. Gofer, H. Sarker, J.G. Killian, T.O. Poehler, P.C. Searson: The electrochemistry of fluorine-substituted polyphenylthiophenes for charge storage applications. J. Electroanal. Chem.443103 (1998)

    Article  CAS  Google Scholar 

  23. Q. Zheng, B.J. Jung, J. Sun, H.E. Katz: Ladder-type oligo-p-phenylene-containing copolymers with high open-circuit voltages and ambient photovoltaic activity. J. Am. Chem. Soc.132, (15) 5394 (2010)

    Article  CAS  Google Scholar 

  24. H. Sarker, Y. Gofer, J.G. Killian, T.O. Poehler, P.C. Searson: Synthesis and characterization of fluoro-substituted polyphenylthiophenes for charge storage applications. Synth. Met.88179 (1997)

    Article  CAS  Google Scholar 

  25. J.L. Brédas, G.B. Street: Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res.18309 (1985)

    Article  Google Scholar 

  26. R. Yang, W.H. Smyrl, D.F. Evans, W.A. Hendrickson: Evolution of polypyrrole band-structure—A scanning tunneling spectroscopy study. J. Phys. Chem.96, (3) 1428 (1992)

    Article  CAS  Google Scholar 

  27. P.J. Nigrey, D. Macinnes, D.P. Nairns, A.G. Macdiarmid, A.J. Heeger: Lightweight rechargeable storage batteries using polyacetylene, (CH)X as the cathode-active material. J. Electrochem. Soc.128, (8) 1651 (1981)

    Article  CAS  Google Scholar 

  28. D. Macinnes, M.A. Druy, P.J. Nigrey, D.P. Nairns, A.G. Macdiarmid, A.J. Heeger: Organic batteries—Reversible n-type and p-type electrochemical doping of polyacetylene, (CH)X. J. Chem. Soc. Chem. Commun.317 (1981)

    Google Scholar 

  29. C.K. Chiang: An all-polymeric solid-state battery. Polymer22, (11) 1454 (1981)

    Article  CAS  Google Scholar 

  30. T. Nagatomo, T. Honma, C. Yamamoto, K. Negishi, O. Omoto: A long-lasting polyacetylene battery with high-energy density. Jpn. J. Appl. Phys. Part 122, (5) L275 (1983)

    Article  Google Scholar 

  31. A.G. Macdiarmid, L.S. Yang, W.S. Huang, B.D. Humphrey: Polyaniline-electrochemistry and application to rechargeable batteries. Synth. Met.18, (1-3) 393 (1987)

    Article  CAS  Google Scholar 

  32. S. Taguchi, T. Tanaka: Fibrous polyaniline as positive active material in lithium secondary batteries. J. Power Sources20, (3-4) 249 (1987)

    Article  CAS  Google Scholar 

  33. F. Goto, K. Abe, K. Okabayashi, T. Yoshida, H. Morimoto: The polyaniline lithium battery. J. Power Sources20, (3-4) 243 (1987)

    Article  CAS  Google Scholar 

  34. S. Panero, P. Prosperi, F. Bonino, B. Scrosati, A. Corradini, M. Mastragostino: Characteristics of electrochemically synthesized polymer electrodes in lithium cells. 3. Polypyrrole. Electrochim. Acta32, (7) 1007 (1987)

    Article  CAS  Google Scholar 

  35. R. Bittihn, G. Ely, F. Woeffler: Polypyrrole as an electrode material for secondary lithium cells. Makromol. Chem.851 (1987)

    Article  CAS  Google Scholar 

  36. M.D. Levi, Y. Gofer, D. Aurbach: A synopsis of recent attempts toward construction of rechargeable batteries utilizing conducting polymer cathodes and anodes. Polym. Adv. Technol.13, (10-12) 697 (2002)

    Article  CAS  Google Scholar 

  37. H.K. Song, G.T.R. Palmore: Redox-active polypyrrole: Toward polymer-based batteries. Adv. Mater.18, (13) 1764 (2006)

    Article  CAS  Google Scholar 

  38. T. Yamamoto, M. Zama, M. Hishinuma, A. Yamamoto: Lithium secondary cells using LiX (X = ClO4, BF4) as electrolyte and poly(2,5-pyrrolylene) and poly(2,5-thienylene) as materials for positive electrodes. J. Appl. Electrochem.17607 (1987)

    Article  CAS  Google Scholar 

  39. S. Panero, P. Prosperi, D. Zane, B. Scrosati: Properties of electrochemically synthesized polymer electrodes. 7. Kinetics of poly-3-methylthiophene in lithium cells. J. Appl. Electrochem.22, (3) 189 (1992)

    Article  CAS  Google Scholar 

  40. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld: Conducting polymers as active materials in electrochemical capacitors. J. Power Sources4789 (1994)

    Article  CAS  Google Scholar 

  41. M-A. Sato, S. Tanaka, K. Kaeriyama: Electrochemical preparation of highly anode-active poly(3-phenylthiophene). J. Chem. Soc. Chem. Commun.1725 (1987)

    Google Scholar 

  42. J.P. Ferraris, M.M. Eissa, I.D. Brotherston, D.C. Loveday: Performance evaluation of poly 3-(phenylthiophene) derivatives as active materials for electrochemical capacitor applications. Chem. Mater.10, (11) 3528 (1998)

    Article  CAS  Google Scholar 

  43. H. Sarker, I. Ong, S. Sarker, P.C. Searson, T.O. Poehler: Design and synthesis of a series of substituted polyphenylene-thiophenes. Synth. Met.108, (1) 33 (2000)

    Article  CAS  Google Scholar 

  44. H. Sarker, Y. Gofer, J.G. Killian, T.O. Poehler, P.C. Searson: Synthesis and characterization of a series of fluorine-substituted phenylene-thienyl polymers for battery applications. Synth. Met.971 (1998)

    Article  CAS  Google Scholar 

  45. Y. Gofer, H. Sarker, J.G. Killian, T.O. Poehler, P.C. Searson: An all-polymer charge storage device. Appl. Phys. Lett.711582 (1997)

    Article  CAS  Google Scholar 

  46. H. Usta, C. Risko, Z.M. Wang, H. Huang, M.K. Deliomeroglu, A. Zhukhovitskiy, A. Facchetti, T.J. Marks: Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. J. Am. Chem. Soc.131, (15) 5586 (2009)

    Article  CAS  Google Scholar 

  47. M.D. Levi, A.S. Fisyuk, R. Demadrille, E. Markevich, Y. Gofer, D. Aurbach, A. Pron: Unusually high stability of a poly(alkylquaterthiophene-alt-oxadiazole) conjugated copolymer in its n and p-doped states. Chem. Commun.3299 (2006)

    Google Scholar 

  48. C.Y. Wang, G. Tsekouras, P. Wagner, S. Gambhir, C.O. Too, D. Officer, G.G. Wallace: Functionalised polyterthiophenes as anode materials. Synth. Met.160, (1-2) 76 (2009)

    Article  CAS  Google Scholar 

  49. B.L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds: Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater.12, (7) 481 (2000)

    Article  CAS  Google Scholar 

  50. K.M. Abraham, M. Alamgir: Dimensionally stable MEEP-based polymer electrolytes and solid-state lithium batteries. Chem. Mater.3, (2) 339 (1991)

    Article  CAS  Google Scholar 

  51. K.M. Abraham, M. Alamgir: Li+-conductive solid polymer electrolytes with liquid-like conductivity. J. Electrochem. Soc.1990, (137) 1657 (1990)

    Article  Google Scholar 

  52. A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plee, M. Mastragostino, S. Passerini: High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources165, (2) 922 (2007)

    Article  CAS  Google Scholar 

  53. Y. Matsuda, M. Morita, M. Ishikawa, M. Ihara: New electric double-layer capacitors using polymer solid electrolytes containing tetraalkylammonium salts. J. Electrochem. Soc.140, (7) L109 (1993)

    Article  CAS  Google Scholar 

  54. T. Osaka, X.J. Liu, M. Nojima, T. Momma: An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder. J. Electrochem. Soc.146, (5) 1724 (1999)

    Article  CAS  Google Scholar 

  55. C. Iwakura, H. Wada, S. Nohara, N. Furukawa, H. Inoue, M. Morita: New electric double layer capacitor with polymer hydrogel electrolyte. Electrochem. Solid-State Lett.6, (2) A37 (2003)

    Article  CAS  Google Scholar 

  56. M. Ishikawa, T. Kishino, N. Katada, M. Morita: Performance of electric double layer capacitors with polymer gel electrolytes. New Mater. Batteries and Fuel Cells575423 (2000)

    CAS  Google Scholar 

  57. B.J. Kim, S.G. Oh, M.G. Han, S.S. Im: Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions. Synth. Met.122, (2) 297 (2001)

    Article  CAS  Google Scholar 

  58. V.R. Tirumala, G.T. Caneba, Y. Dar, H.H. Wang, D.C. Mancini: Nanoparticles from a controlled polymerization process. Adv. Polym. Technol.22, (2) 126 (2003)

    Article  CAS  Google Scholar 

  59. H. Segawa, T. Shimidzu, K. Honda: A novel photo-sensitized polymerization of pyrrole. J. Chem. Soc. Chem. Commun.132 (1989)

    Google Scholar 

  60. L. Zhou, T.O. Poehler, P.C. Searson in preparation. (2009)

  61. B. Coffey, P.V. Madsen, T.O. Poehler, P.C. Searson: High charge density conducting polymer/graphite fiber composite electrodes for battery applications. J. Electrochem. Soc.142, (2) 321 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore O. Poehler.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts author by editors, please refer to http://www.mrs.org/jmr_policy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, H.E., Searson, P.C. & Poehler, T.O. Batteries and charge storage devices based on electronically conducting polymers. Journal of Materials Research 25, 1561–1574 (2010). https://doi.org/10.1557/JMR.2010.0201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0201

Navigation