Skip to main content
Log in

Distribution of alloying elements and the corresponding structural evolution of Mn–Sb alloys in high magnetic field gradients

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The distribution of alloying elements and the corresponding structural evolution of Mn–Sb alloys in magnetic field gradients were investigated in detail. It was found that a high magnetic field gradient could control the distribution of solute element in the alloys during the solidification process and therefore resulted in the coexistence of both primary MnSb and Sb phases or the aggregation of the primary MnSb with a continuous change in morphology. The positions where these primary phases located depended on the direction of field gradient. The control of the solute element distribution by a high magnetic field gradient was realized through the magnetic buoyancy force that could drive the migration of Mn element in the melt, originating from the difference in the magnetic susceptibility between Mn and Sb. The effectiveness of this control depends on the alloy composition, specimen dimension, cooling rate, and BdB/dz value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Liu, G.C. Yang: Rapid solidification of highly undercooled bulk liquid superalloy: Recent developments, future directions. Int. Mater. Rev.51145 (2006)

    Article  CAS  Google Scholar 

  2. T. Watanabe, S. Tsurekawa, X. Zhao, L. Zuo: Grain boundary engineering by magnetic field application. Scr. Mater.54969 (2006)

    Article  CAS  Google Scholar 

  3. S. Suresh: Graded materials for resistance to contact deformation and damage. Science2922447 (2001)

    Article  CAS  Google Scholar 

  4. Y. Fukui, Y. Watanabe: Analysis of thermal residual stress in a thick-walled ring of Duralcan-base Al–SiC functionally graded material. Metall. Mater. Trans.274145 (1996)

    Article  Google Scholar 

  5. H.P. Utech, M.C. Flemings: Elimination of solute banding in indium antimonide crystals by growth in a magnetic field. J. Appl. Phys.352021 (1966)

    Article  Google Scholar 

  6. D.L. Cox: Quadrupolar Kondo effect in uranium heavy-electron materials? Phys. Rev. Lett.591240 (1987)

    Article  CAS  Google Scholar 

  7. N. Frederick, M.B. Maple: Crystalline electric-field effects in the electrical resistivity of PrOs4Sb12. J. Phys. Condens. Matter154789 (2003)

    Article  CAS  Google Scholar 

  8. C.J. Wang, Q. Wang, Z.Y. Wang, H.T. Li, K. Nakajima, J.C. He: Phase alignment and crystal orientation of Al3Ni in Al–Ni alloy by imposition of a uniform high magnetic field. J. Cryst. Growth3101256 (2008)

    Article  CAS  Google Scholar 

  9. H. Yasuda, I. Ohnaka, O. Kawakami, K. Ueno, K. Kishio: Effect of magnetic field on solidification in Cu–Pb monotectic alloys. ISIJ Int.43942 (2003)

    Article  CAS  Google Scholar 

  10. Q. Wang, C.J. Wang, T. Liu, K. Wang, J.C. He: Control of solidified structures in aluminum-silicon alloys by high magnetic fields. J. Mater. Sci.4210000 (2007)

    Article  CAS  Google Scholar 

  11. Q. Wang, C.S. Lou, T. Liu, N. Wei, C.J. Wang, J.C. He: Fabrication of MnBi/Bi composite using dilute master alloy solidification under high magnetic field gradients. J. Phys. D42025001 (2009)

    Article  Google Scholar 

  12. T. Liu, Q. Wang, A. Gao, C. Zhang, C.J. Wang, J.C. He: Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients. Scr. Mater.57992 (2007)

    Article  CAS  Google Scholar 

  13. E. Beaugnon, R. Tournier: Levitation of organic materials. Nature349470 (1991)

    Article  Google Scholar 

  14. M.A. Weilert, D.L. Whitaker, H.J. Maris, G.M. Seidel: Magnetic levitation and noncoalescence of liquid helium. Phys. Rev. Lett.774840 (1996)

    Article  CAS  Google Scholar 

  15. R.F. Tournier, E. Beaugnon, J. Noudem, S. Rakotoarison: Materials processing in a magnetic force opposed to the gravity. J. Magn. Magn. Mater.2094226 (2001)

    Google Scholar 

  16. Q. Wang, T. Liu, A. Gao, C. Zhang, C.J. Wang, J.C. He: A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient. Scr. Mater.561087 (2007)

    Article  CAS  Google Scholar 

  17. M. Hansen Constitution of Binary Alloys(McGraw-Hill, New York 1958)132

    Google Scholar 

  18. C.S. Lou, Q. Wang, C.J. Wang, T. Liu, K. Nakajima, J.C. He: Migration and rotation of TiAl3 particles in an Al-melt solidified under high magnetic field conditions. J. Alloys Compd.472225 (2009)

    Article  CAS  Google Scholar 

  19. M.F.X. Gigliotti, G.A. Colligan, G.L.F. Powell: Halo formation in eutectic alloy systems. Metall. Trans.1891 (1970)

    Article  CAS  Google Scholar 

  20. S.T. Bluni, M.R. Notis, A.R. Marder: Nucleation characteristics and microstructure in off-eutectic Al–Zn alloys. Acta Metall. Mater.431775 (1995)

    Article  CAS  Google Scholar 

  21. H.T. Li, J.T. Guo, K.W. Huai, H.Q. Ye: Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy. J. Cryst. Growth290258 (2006)

    Article  CAS  Google Scholar 

  22. R. Dupree, E.F.W. Seymour Liquid Metals(Marcel Dekker, New York 1972)461

    Google Scholar 

  23. D.J. Steinberg: A simple relationship between the temperature dependence of the density of liquid metals and their boiling temperatures. Metall. Trans. A51341 (1974)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Wang, Q., Gao, A. et al. Distribution of alloying elements and the corresponding structural evolution of Mn–Sb alloys in high magnetic field gradients. Journal of Materials Research 25, 1718–1727 (2010). https://doi.org/10.1557/JMR.2010.0226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0226

Navigation