Skip to main content
Log in

The chemomechanics of crystallization during rewetting of limestone impregnated with sodium sulfate

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Breakdown of porous materials by salts occurs when growing crystals exert pressure on the pore walls, inducing stress in the material that exceeds its tensile strength. In this work, we quantify the mechanical stresses caused by a particularly destructive mechanism: the dissolution of an anhydrate (thenardite, Na2SO4) followed by precipitation of a hydrated salt (mirabilite, Na2SO4·10H2O). Stresses are measured using a composite specimen consisting of a plate of glass bonded to a plate of limestone (CaCO3) whose pores are impregnated with thenardite. As water wicks into the limestone, thenardite dissolves and mirabilite precipitates. The limestone expands from the pressure exerted by the salt resulting in deflection of the composite, and the stresses can be obtained from an elastic analysis. Synchrotron x-ray diffraction reveals the dissolution–crystallization rate. Numerical modeling shows that the stresses are affected by the kinetics of crystallization and dissolution, permeability, and mechanical properties of the stone, allowing us to determine the amount of salt that causes material fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. I.S. Evans: Salt crystallization and rock weathering. Revue de Géomorphologie dynamique 19 (4), 153 (1969).

    Google Scholar 

  2. F.J.P.M. Kwaad: Experiments on the granular disintegration of granite by salt action. Fysisch Geografisch en Bodemkundig Laboratorium 16, 67 (1970).

    Google Scholar 

  3. A.S. Goudie: Further experimental investigation of rock weathering by salt and other mechanical processes. Z. Geomorphol. Suppl. 21,1 (1974).

    Google Scholar 

  4. G.W. Scherer: Crystallization in pores. Cem. Concr. Res. 29, 1347 (1999).

    Article  CAS  Google Scholar 

  5. C. Rodriguez-Navarro and E. Doehne: Salt weathering: Influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf. Processes Landforms 24, 191 (1999).

    Article  CAS  Google Scholar 

  6. C. Rodriguez-Navarro, E. Doehne, and E. Sebastian: How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem. Concr. Res. 30, 1527 (2000).

    Article  CAS  Google Scholar 

  7. R.J. Flatt: Salt damage in porous materials: How high supersaturations are generated. J. Cryst. Growth 242, 435 (2002).

    Article  CAS  Google Scholar 

  8. G.W. Scherer: Stress from crystallization of salt. Cem. Concr. Res. 34, 1613 (2004).

    Article  CAS  Google Scholar 

  9. O. Coussy: Deformation and stress from in-pore drying-induced crystallization of salt. J. Mech. Phys. Solids 54, 1517 (2006).

    Article  CAS  Google Scholar 

  10. E. Ruiz-Agudo, F. Mees, P. Jacob, and C. Rodriguez-Navarro: The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environ. Geol. 52, 269 (2007).

    Article  CAS  Google Scholar 

  11. A. Hamilton, C. Hall, and L. Pel: Salt damage and the forgotten metastable sodium sulfate heptahydrate: Direct observation of crystallization in a porous material. J. Phys. D: Appl. Phys. 41, 212002 (2008).

    Article  CAS  Google Scholar 

  12. M. Steiger and S. Asmussen: Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress. Geochim. Cosmochim. Acta 72, 4291 (2008).

    Article  CAS  Google Scholar 

  13. M. Steiger and K. Linnow: Hydration of MgSO4·H2O and generation of stress in porous materials. Cryst. Growth Des. 8, 336 (2008).

    Article  CAS  Google Scholar 

  14. R.M. Espinosa-Marzal and G.W. Scherer: Crystallization of sodium sulfate salts in limestone. Environ. Geol. 56, 605 (2008).

    Article  CAS  Google Scholar 

  15. R.M. Espinosa-Marzal and G.W. Scherer: Study of the pore clogging induced by salt crystallization, in Proceedings of the 11th International Congress on Deterioration and Conservation of Stone, September 15–20, 2008 (Nicolaus Copernicus University Press, Torun, Poland), p. 81.

    Google Scholar 

  16. A. Goudie and H. Viles: Salt Weathering Hazards (Wiley, Chichester, 1997).

    Google Scholar 

  17. E. Doehne: Salt weathering: A selective review, in Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies, edited by S. Siegesmund, A. Vollbrecht, and T. Weiss (Geological Society Special Publication 205, London, 2003), p. 51.

    Google Scholar 

  18. H. Loewel: Observations sur la sursaturation des dissolutions salines. Ann. Chim. Phys. 29, 62 (1850).

    Google Scholar 

  19. J. Thomson: On the disintegration of stones exposed in buildings and otherwise to atmospheric influence. Report of the Annual Meeting, British Association for the Advancement of Science, p. 35 (1862).

    Google Scholar 

  20. J. Lavalle: Research on the slow growth of crystals at ambient temperature. C. R. Acad. Sci. Paris 36, 493 (1853).

    Google Scholar 

  21. S. Taber: The growth of crystals under external pressure. Am. J. Sci. 41, 532 (1916).

    Article  Google Scholar 

  22. C.W. Correns and W. Steinborn: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft. Z. Krist. (A) 101, 117 (1939).

    CAS  Google Scholar 

  23. C.W. Correns: Growth and dissolution of crystals under linear pressure. Discuss. Faraday Soc. 5, 267 (1949).

    Article  Google Scholar 

  24. R.J. Flatt, M. Steiger, and G.W. Scherer: A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure. Environ. Geol. 52, 187 (2007).

    Article  CAS  Google Scholar 

  25. M. Steiger: Crystal growth in porous materials I: The crystallization pressure of large crystals. J. Cryst. Growth 282, 455 (2005).

    Article  CAS  Google Scholar 

  26. M. Steiger: Crystal growth in porous materials II: Influence of crystal size on the crystallization pressure. J. Cryst. Growth 282, 470 (2005).

    Article  CAS  Google Scholar 

  27. R.M. Espinosa, L. Franke, and G. Deckelmann: Model for the mechanical stress due to the salt crystallization in porous materials. J. Constr. Build. Mat. 22, 1350 (2007).

    Article  Google Scholar 

  28. S. Chatterji and A.D. Jensen: Efflorescence and breakdown of building materials. Nordic Concr. Res. 8, 56 (1989).

    Google Scholar 

  29. N. Tsui, R.J. Flatt, and G.W. Scherer: Crystallization damage by sodium sulfate. J. Cult. Herit. 4, 109 (2003).

    Article  Google Scholar 

  30. R.U. Cooke: Laboratory simulation of salt weathering processes in arid environments. Earth Surf. Processes 4, 347 (1979).

    Article  CAS  Google Scholar 

  31. ASTM C 88-90: Standard test method for soundness of aggregate by use of sodium sulfate or magnesium sulfate. Annu. Book ASTM Stand. 4.2, p. 37 (1997).

    Google Scholar 

  32. RILEM 1980: Recommended tests to measure the deterioration of stones and assess the effectiveness of treatment methods. Commission 25-PEM: Protection et Erosion des Monuments, p. 175 (1980).

    Google Scholar 

  33. O. Coussy: Poromechanics (John Wiley & Sons, 2004).

    Google Scholar 

  34. H. van Olphen: An Introduction to Clay Colloid Chemistry, 2nd ed. (Wiley, NY, 1977).

    Google Scholar 

  35. W. Vichit-Vadakan and G.W. Scherer: Measuring permeability of rigid materials by a beam-bending method: II. Porous vycor. J. Am. Ceram. Soc. 83, 2240 (2000). Erratum J. Am. Ceram. Soc. 87, 1614(2004).

    Article  CAS  Google Scholar 

  36. G.W. Scherer and I. Jiménez González: Characterization of swelling in clay-bearing stone, in Stone Decay and Conservation, SP-390, edited by A.V. Turkington (Geological Society of America, Boulder, CO 2005) pp. 51–61.

    Google Scholar 

  37. T. Metzger, A. Irawan, and E. Tsotsas: Influence of pore structure on drying kinetics: A pore network study. Am. Inst. Chem. Eng. 53, 3029 (2007).

    Article  CAS  Google Scholar 

  38. B. Haimson: Micromechanisms of borehole instability leading to breakouts in rocks. Int. J. Rock Mech. Min. Sci. 44, 157 (2007).

    Article  Google Scholar 

  39. O. Katz, Z. Rechesa, and J.C. Roegiers: Evaluation of mechanical rock properties using a Schmidt Hammer. Int. J. Rock Mech. Min. Sci. 37, 723 (2000).

    Article  Google Scholar 

  40. G. Dharmasena and R. Frech: The stabilization of phase III and phase I in sodium sulfate by aliovalent cation substitution. J. Chem. Phys. 99, 8929 (1993).

    Article  CAS  Google Scholar 

  41. G.W. Scherer: Drying gels: III. Warping plate. J. Non-Cryst. Solids 91, 83 (1987).

    Article  CAS  Google Scholar 

  42. T.P. Wangler, A. Stratulat, P. Duffus, J.-H. Prévost, and G.W. Scherer: Flaw propagation and buckling in clay-bearing sandstones. Environ. Earth Sci. (2010) doi: 10.1007/s12665-010-0732-y.

    Google Scholar 

  43. H. Hartley, B.M. Jones, and G.A. Hutchinson: The spontaneous crystallisation of sodium sulfate solutions. J. Chem. Soc. 93, 825 (1908).

    Article  Google Scholar 

  44. S. Genkinger and A. Putnis: Crystallisation of sodium sulfate: Supersaturation and metastable phases. Environ. Geol. 52, 295 (2007).

    Article  CAS  Google Scholar 

  45. E. Balboni, R.M. Espinosa-Marzal, E. Doehne, and G.W. Scherer: Can drying and re-wetting of magnesium sulfate salts lead to damage of stone? Env. Earth Sci. (2010), doi: 10.1007/s12665-010-0774-1.

    Google Scholar 

  46. M.C. Malin: Salt weathering on Mars. J. Geophys. Res. 79, 3888 (1974).

    Article  CAS  Google Scholar 

  47. O. Coussy and S. Brisard: Prediction of drying shrinkage beyond the pore isodeformation assumption. J. Mech. Mater. Struct. 4, 263 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Chris Hall for helpful advice. The authors also thank the Deutsche Forschungsgemeinschaft, the Getty Conservation Institute, the National Center for Preservation Technology & Training (NCPTT) (Grant MT-2210-09-NC-03), and the United Kingdom Engineering and Physical Sciences Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Espinosa-Marzal.

Electronic supplementary material

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinosa-Marzal, R.M., Hamilton, A., McNall, M. et al. The chemomechanics of crystallization during rewetting of limestone impregnated with sodium sulfate. Journal of Materials Research 26, 1472–1481 (2011). https://doi.org/10.1557/jmr.2011.137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.137

Navigation