Skip to main content
Log in

Electrical and Optical Properties of Indium Doped Zinc Oxide Films Prepared by Atmospheric Pressure Chemical Vapor Deposition

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Indium doped zinc oxide films have been deposited from diethyl zinc, ethanol and trimethyl indium in the temperature range between 225°C and 450°C in a laminar flow atmospheric chemical vapor deposition reactor. Both doped and undoped films were crystalline. The doped films have electron density up to 9×1020 cm−3, conductivity up to 850 Ω−1 cm−1, and mobility up to 8 cm2/Vs. The indium doping increases the average visible absorption from less than 1% to above 20%. The transparency and conductivity of indium doped zinc oxide films are lower than those of fluorine doped films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hu and R. G. Gordon, J. Appl. Phys. 71, 880 (1992).

    Article  CAS  Google Scholar 

  2. J. Hu and R. G. Gordon, Solar Cells 30, 437 (1991).

    Article  CAS  Google Scholar 

  3. A. F. Aktaruzzaman, G. L. Sharma, and L. K. Malhotra, Thin Solid Films 198, 67 (1991).

    Article  CAS  Google Scholar 

  4. T. Minami, H. Sato, H. Nanto, and S. Takata, Thin Solid Films 176, 277 (1989).

    Article  CAS  Google Scholar 

  5. Z.-C. Jin, I. Hamberg, and C. G. Granqvist, J. Appl. Phys. 64, 5117 (1988).

    Article  CAS  Google Scholar 

  6. S. Oda, H. Tokunaga, N. Kitajima, J. Hanna, I. Shimizu, and H. Kokado, Jpn. J. Appl. Phys. 24, 1607 (1985).

    Article  CAS  Google Scholar 

  7. I. Hamberg and C. G. Granqvist, J. Appl. Phys. 60, R123 (1986).

    Article  CAS  Google Scholar 

  8. R. G. Gordon, J. W. Proscia, F. B. Ellis, Jr., and A. E. Delahoy, Solar Energy Mater. 18, 263 (1989).

    Article  CAS  Google Scholar 

  9. R. Banerjee, S. Ray, N. Basu, A. K. Batabyal, and A. K. Barua, J. Appl. Phys. 62, 912 (1987).

    Article  CAS  Google Scholar 

  10. J. Hu and R. G. Gordon, J. Electrochem. Soc. 139, 2014 (1992).

    Article  CAS  Google Scholar 

  11. B. H. Choi, H. B. Im, J. S. Song, K. H. Yoon, Thin Solid Films 194, 712 (1990).

    Article  Google Scholar 

  12. S. N. Qiu, C. X. Qiu, and I. Shih, Solar Energy Mater. 15, 261 (1987).

    Article  CAS  Google Scholar 

  13. S. Major, A. Banerjee, and K. L. Chopra, Thin Solid Films 122, 31 (1984).

    Article  CAS  Google Scholar 

  14. T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 23, L280 (1984).

    Article  Google Scholar 

  15. A. Kuroyanagi, J. Appl. Phys. 66, 5492 (1989).

    Article  CAS  Google Scholar 

  16. T. Okamura, Y. Seki, S. Nagakari, and H. Okushi, Jpn. J. Appl. Phys. 31, L762 (1992).

    Article  CAS  Google Scholar 

  17. J. Hu and R. G. Gordon, Mater. Res. Soc. Symp. Proc. 242, 743 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Renewable Energy Laboratory. The instruments at Harvard university materials research laboratory were also used. We would like to thank Yuan. Z. Lu and David Lange for their assistance in some film characterizations. The Watkins-Johnson Company donated the gas dispersion nozzle.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Gordon, R.G. Electrical and Optical Properties of Indium Doped Zinc Oxide Films Prepared by Atmospheric Pressure Chemical Vapor Deposition. MRS Online Proceedings Library 283, 891–896 (1992). https://doi.org/10.1557/PROC-283-891

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-283-891

Navigation