Skip to main content
Log in

Energetic Materials in Ceramics Synthesis

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Combustion of a proper combination of an oxidizer and a fuel can produce the exothermicity required for the simultaneous synthesis of oxide ceramic powders. Oxidizers include metal nitrates, ammonium nitrate, and ammonium perchlorate, while urea, carbohydrazide, glycine and others have been used successfully as fuels. Combustion methods are particularly well-suited to producing multicomponent metal oxides, yielding compositionally homogeneous, fine particles with low impurity content. Organic fuels, particularly those containing nitrogen, also serve as a complexant in the precursor, which inhibits inhomogeneous precipitation from occurring prior to combustion. The exothermic redox decomposition of these oxidizer-fuel mixtures is initiated at low temperatures, usually <250°C. Properties of the products are influenced by the nature of the fuel and the oxidizer/fuel ratio. Many technologically important oxide ceramics have been produced by these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. J. Kingsley and K. C. Patil, Materials Letters, 6(111,212), 427–432 (1988).

    Article  CAS  Google Scholar 

  2. J. J. Kingsley, Ph. D (Thesis), Indian Institute of Science, 1989.

  3. R. Gopi Chandran and K. C. Patil, Materials Letters, 10(6), 291–295 (1990).

    Article  Google Scholar 

  4. J. J. Kingsley and K. C. Patil, Ceramic Transactions, Vol. 12, Ceramic Powder Science-III, Ed. G. L. Messing, S. Hirano and H. Hausner (The American Ceramic Society, 1990) pp.217–223.

    CAS  Google Scholar 

  5. J. J. Kingsley, K. Suresh and K. C. Patil, J. Mater. Sci., 25, 1305–1312 (1990).

    Article  CAS  Google Scholar 

  6. S. Sundar Manoharan, N. R. S. Kumar, and K. C. Patil, Mat. Res. Bull., 25, 731–738 (1990).

    Article  Google Scholar 

  7. R. Gopi Chandran and K. C. Patil, Materials Letters, 12, 437–441, (1992).

    Article  Google Scholar 

  8. S. Sundar Manoharan and K. C. Patil, J. Am. Ceram. Soc., 75(4), 1012–1015 (1992).

    Article  Google Scholar 

  9. K. Suresh, N. R. S. Kumar, and K. C. Patil, Adv. Mater., 3(3), 148–150 (1991).

    Article  CAS  Google Scholar 

  10. J. J. Kingsley, K. Suresh and K. C. Patil, J. Solid State Chem., 87, 435–442 (1990).

    Article  Google Scholar 

  11. L. A. Chick, J. L. Bates, L. R. Pederson and H. E. Kissinger, in: Proc. 1st. Intern. Symp. on solid Oxide Fuel Cells, ed. S. C. Singhal (Electrochemical Society, Pennington, NJ, 1989) pp. 170–179.

  12. L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas and G. J. Exarhos, Materials Letters, 10(11,22), 6–12 (1990).

    Article  CAS  Google Scholar 

  13. J. Lambert Bates, L. A. Chick and W. J. Weber, Solid State Ionics, 52, 235–242 (1992).

    Article  Google Scholar 

  14. Bakhman, N. N., Combust. Explosion. Shock Waves, 4, 9 (1968).

    Google Scholar 

  15. S. R. Jain and K. C. Adiga, Combustion and Flame, 40, 71–79 (1981).

    Article  CAS  Google Scholar 

  16. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 4th ed., Wiley- Interscience, New York, 1980, p.689.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kingsley, J., Pederson, L. Energetic Materials in Ceramics Synthesis. MRS Online Proceedings Library 296, 361–366 (1992). https://doi.org/10.1557/PROC-296-361

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-296-361

Navigation