Skip to main content
Log in

Theoretical Study of InAsSb/InT1Sb Superlattice for the Far Infrared Detector

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We propose a novel superlattice (SL) InAsySb1-y./InxTl1-.xSb lattice matched to InSb for a potential application as an infrared detector material in the 8–12 µm wavelength range. We report on the results of energy band calculations for this SL using the modified Kronig-Penney model. Our preliminary calculations indicate that InAs0.07Sb0.93/In0.93Tl0.07Sb would exhibit a type-I SL with conduction band offset of 34 meV and valence band offset of 53 meV at OK. Due to the lack of accurate information on material parameters, namely, energy offsets and effective masses of InTlSb, these were estimated by comparison with the behavior of HgCdTe system. The theory predicts three heavy hole subbands and one partially confined electron in the 30Å InAs0.07Sb0.93/100Å In0.93Tl0.07Sb SL. The band gap of the SL was computed to be 0.127 eV (9.7 µm). It is expected that this SL will allow improvements in the InTlSb epilayers’ structural quality as it will be sandwiched between higher quality zincblende InAsSb layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AJ. Noreika, WJ. Takei, M.H. Francombe, and C.E.C. Wood, J. Appl. Phys. 53, 4932 (1982).

    Article  CAS  Google Scholar 

  2. M.V. Schilfgaarde, A. Sher, and A.B. Chen, Appl. Phys. Lett. 62, 1857 (1993).

    Article  Google Scholar 

  3. P.T. Staveteig, Y.H. Choi, G. Labeyrie, E. Bigan, and M. Razeghi, Appl. Phys. Lett. 64, 460 (1994).

    Article  CAS  Google Scholar 

  4. Y.H. Choi, C. Besikci, R. Sudharsanan, and M. Razeghi, Appl. Phys. Lett. 63, 361 (1993).

    Article  CAS  Google Scholar 

  5. AB. Chen, M.V. Schilfgaarde, A. Sher, J. Electron. Mater. 22, 843 (1993).

    Article  CAS  Google Scholar 

  6. H.S. Cho and P.R. Prucnal, Phys. Rev. B 36, 3237(1987).

    Article  CAS  Google Scholar 

  7. P.W. Kruse in Semiconductors and Semimetals, edited by W. Beer, Academic Press, New York, 1981, p. 9–10.

  8. S.R. Kurtz, Mater. Res. Soc. Symp. Proc. 216, 163 (1991).

    Article  CAS  Google Scholar 

  9. S.R. Kurtz and R M. Biefeld, Phys. Rev. B 44, 1143 (1991).

    Article  CAS  Google Scholar 

  10. C.E.C. Wood, A. Noreika, and M. Francombe, J. Appl. Phys. 59, 3610 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by AFOSR (Grant No. F49620-93-1-0111DEF and F49620-95-1-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Iyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iyer, S., Chowdhury-Nagle, S., Li, J. et al. Theoretical Study of InAsSb/InT1Sb Superlattice for the Far Infrared Detector. MRS Online Proceedings Library 421, 395–399 (1996). https://doi.org/10.1557/PROC-421-395

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-421-395

Navigation