Skip to main content
Log in

Bismuth Pyrochlore Films for Dielectric Applications

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Bismuth pyrochlore ceramics have modest temperature coefficients of capacitance, good microwave properties, and can be prepared at relatively modest temperatures (~900 - 1100 °C). This work focuses on the preparation and characterization of thin films in this family for the first time. A sol-gel procedure using bismuth acetate in acetic acid and pyridine, in combination with zinc acetate dihydrate and niobium ethoxide in 2-methoxyethanol was developed. The solution chemistry was adjusted to prepare (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 and Bi2(Zn1/3Nb2/3)2O7 films. Solutions were spin-coated onto platinized Si substrates and crystallized by rapid thermal annealing. In both cases, crystallization occurred by 550 °C into the cubic pyrochlore structure. (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 films remained in the cubic phase up to crystallization temperatures of 750 °C, while the structure of the Bi2(Zn1/3Nb2/3)2O7 thin films is dependent of the firing temperature: cubic below 650 °C and orthorhombic above 750 °C. A mixture of cubic and orthorhombic structures is found at 700 °C. The resulting BZN films are dense, uniform, and smooth (rms roughness of < 5 nm). Cubic bismuth zinc niobate films show dielectric constants up to 150, a negative temperature coefficient of capacitance, TCC, (~ - 400 ppm/°C), tan δ < 0.01, and a field tunable dielectric constant. Orthorhombic films showed smaller dielectric constants (~80), low tan δ (< 0.01), positive TCC, and field independent dielectric constants. TCC could be adjusted to new 0 ppm/°C using a mixture of orthorhombic and cubic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Yan, H. C. Ling, and W. W. Rhodes, J. Am. Ceram. Soc., 73, 1106 (1990).

    Article  CAS  Google Scholar 

  2. D. Liu, Y. Liu, S. Huang, and X. Yao, J. Am. Ceram. Soc., 76, 2129 (1993).

    Article  CAS  Google Scholar 

  3. D. P. Cann, C. A. Randall, and T. R. Shrout, Solid State Comm., 100, 529 (1996).

    Article  CAS  Google Scholar 

  4. X. Wang, H. Wang, and X. Yao, J. Am. Ceram. Soc., 80, 2745 (1997).

    Article  CAS  Google Scholar 

  5. H. Kagata, T. Inoue, J. Kato, and I. Kameyama, Jpn. J. Appl. Phys., 31, 3152 (1992).

    Article  CAS  Google Scholar 

  6. S. L. Swartz, and T. R. Shrout, “Ceramic compositions for BZN dielectric resonators,” U. S. Patent, No. 5449652 (1995).

    Google Scholar 

  7. D. P. Cann, “Bismuth pyrochlores for high frequency dielectric applications,” MS Thesis, The Pennsylvania State University (1993).

  8. E. Courtens, Phys. Rev. Lett, 52, 69 (1984).

    Article  CAS  Google Scholar 

  9. U. T. Höchli, Phys. Rev. Lett., 48, 1494 (1982).

    Article  Google Scholar 

  10. S. Bhattacharya, S. R. Nagel, L. Fleishman and S. Susman, Phys. Rev. Lett., 18, 1267 (1982).

    Article  Google Scholar 

  11. D. Huser, L.E. Wenger, A. J. van Duyneveldt, and J. A. Mydosh, Phys. Rev. B 27, 3100 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, W., Thayer, R., Randall, C.A. et al. Bismuth Pyrochlore Films for Dielectric Applications. MRS Online Proceedings Library 603, 137–142 (1999). https://doi.org/10.1557/PROC-603-137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-603-137

Navigation