Skip to main content
Log in

Residual Stress and Microstructure of Electroplated Cu Film on Different Barrier Layers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Copper films of different thicknesses between 0.2 and 2 microns were electroplated on adhesion-promoting TiW and Ta barrier layers on <100> single crystal 6-inch silicon wafers. The residual stress was measured after each processing step using a wafer curvature technique employing Stoney’s equation. Large gradients in the stress distributions were found across each wafer. Controlled Cu grain growth was achieved by annealing films at 350 C for 3 minutes in high vacuum. Annealing increased the average tensile residual stress by about 200 MPa for all the films, which is in agreement with stress-temperature cycling measurements.

After aging for 1 year wafer stress mapping showed that the stress gradients in the copper films were alleviated. No stress discrepancies between the copper on Ta and TiW barrier layers could be found. However, X-ray pole figure analysis showed broad and shifted (111) texture in films on a TiW underlayer, whereas the (111) texture in Cu films on Ta is sharp and centered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Nix, Metall. Trans. A, 20A, pp. 2217–2245, (1989)

    Google Scholar 

  2. Y. Wei and J.W. Hutchinson, J. Mech. Phys. Solids, 45 (7), pp. 1137–1159, (1997)

    Google Scholar 

  3. D.D. Brown, P. Borgesen, D.A. Lilienfeld, M.A. Korhonen and C.Y. Li, Mat. Res. Soc. Symp. Proc. Vol. 239, pp. 701–706, (1993)

    Google Scholar 

  4. H. Toyoda, P.-H. Wang, P. S. Ho, in Proceedings of the International Reliability Physics Symposium in 1998, (IEEE, Piscataway, 1998), pp. 324–328.

    Google Scholar 

  5. E. Zschech, W. Blum, I Zienert, P. R. Besser, Z Metallkd. 92, pp. 803–809, (2001)

    Google Scholar 

  6. R. Rosenberg, D. C. Edelstein, C.-K. Hu, K. P. Rodbell, Annual Review of Materials Sciences, (2000)

    Google Scholar 

  7. K. Ueno, T. Ritzdorf, S. Grace, J. Appl. Phys. 86 (9), pp. 4930–4935, (1999)

    Google Scholar 

  8. S. H. Brongersma, E. Richard, I. Vervoort, H. Bender, W. Vandervorst, S. Lagrange, G. Beyer, K. Maex, J. Appl. Phys. 86 (7), pp. 3642–3645, (1999)

    Google Scholar 

  9. M. Hauschildt, M.S. thesis, The University of Texas at Austin, (1999)

    Google Scholar 

  10. Frontier Semiconductor Measurements Inc., FSM 128&128L Operation Manual Rev. 4/98

  11. M. Doerner and W. Nix, J. Mater. Res. 1, p. 601, (1986)

    Google Scholar 

  12. G.M. Pharr, W.C. Oliver, F. Brotzen, J. Mater. Res., 7 (3), pp. 613–617, (1992)

    Google Scholar 

  13. W.C. Oliver and G.M. Pharr, J. Mater. Res., 7, pp. 1564–1583, (1992)

    Google Scholar 

  14. A.A. Volinsky, J. Vella, I.S. Adhihetty, V. Sarihan, L. Mercado, B.H. Yeung, W.W. Gerberich, Mat. Res. Soc. Symp. Proc. Vol. 649, (2000)

  15. R.P. Vinci, E.M. Zielinski, J.C. Bravman, Thin Solid Films 262, pp. 142–153, (1995)

    Google Scholar 

  16. G. Gottstein, Acta Metall. 32 (7), 1117–1138, (1984)

    Google Scholar 

  17. M. Hauschildt, E. T. Ogawa, S.-H. Rhee, D. Gan, P. S. Ho, to be published in Mater. Res. Soc. Symp. Proc., (2001)

    Google Scholar 

  18. D. P. Tracy, D. B. Knorr, K. P. Rodbell, J. Appl. Phys. 76 (5), (1994) pp. 2671–2680

    Google Scholar 

  19. E. M Zielinski, Ph. D. thesis, Stanford University, (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volinsky, A.A., Hauschildt, M., Vella, J.B. et al. Residual Stress and Microstructure of Electroplated Cu Film on Different Barrier Layers. MRS Online Proceedings Library 695, 1111 (2001). https://doi.org/10.1557/PROC-695-L1.11.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-695-L1.11.1

Navigation