Skip to main content
Log in

Structure/Property Relationships and Applications of Rapidly Solidified Aluminum Alloys

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

During the last five years Pratt & Whitney Aircraft has developed rapid solidification powder metallurgy and consolidation techniques to produce advanced aluminum alloys. A centrifugal rotary atomization device with forced high velocity helium convective cooling has been developed to pilot-plant stage, to produce aluminum alloys of novel compositions for advanced gas turbine engine applications. Rapidly solidified aluminum alloys solidify as spherical droplets up to 100 µm diameter with cooling rates of 105–106 K/sec, and demonstrate new microstructural features which have been exploited to develop elevated temperature mechanical properties. Alloys have been developed for 400–500° F fan and compressor applications that have traditionally used titanium alloys, and this paper reviews the microstructural evolution of rapidly solidified structures during thermomechanical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanders, R. E., et. al., “Elevated Temperature Aluminum Alloy Development,” Final Contract Report, Air Force Wright Aeronautical Laboratories, Contract F33615-77-C-5086, to be published.

  2. Adam, C. M., et. al., “Application of Rapidly Solidified Alloys” Final Contract Report, Air Force Wright Aeronautical Laboratories, Contract F33615-76-C-5136, to be published.

  3. Jones, H., Aluminum, 1978, p. 278.

    Google Scholar 

  4. Brown, L. M., and R. K. Ham, “Strengthening Methods in Crystals,” Elsevier, New York, 1971, Edited by A. Kelly and R. B. Nicholson, p. 9.

  5. Lifshitz, I. M., and V. V. Slyozov, J. Phys. Chem. Solids, 19, 35 (1961).

    Article  Google Scholar 

  6. Wagner, C., Z. Electrochem., 65, 581 (1961).

    Google Scholar 

  7. Ardell, A. J., Ada Met. 20, 61 (1972).

    Article  Google Scholar 

  8. Mondolfo, L., “Aluminum Properties — Structure and Properties,” Butterworths, London, 1976, p. 24.

    Google Scholar 

  9. Hansen, M., “Constitution of Binary Alloys,” McGraw-Hill, New York, 1958.

    Google Scholar 

  10. Bishop, M. and K. E. Fletcher, Int. Met. Rev. 17, 203 (1972).

    Article  Google Scholar 

  11. Armstrong, G. R., and H. Jones, “Solidification and Casting of Metals,” p. 454, 1979, Metals Society, London.

    Google Scholar 

  12. Dean, W. A., and R. F. Spear, Proc. 12th Army Materials Research Conf., Syracuse, N.Y.; Syracuse Univ. Press, 1966, p. 235.

    Google Scholar 

  13. Ichikawa, R., T. Ohashi and T. Ikeda, Jnl. Japanese Inst. Light Metals 9, 929 (1970).

    Google Scholar 

  14. Lewis, R. E., et. al., U.S. Air Force Materials Laboratory Technical Report, 1978, TR-78–102.

  15. Jackson, K. A., and J. D. Hunt, Trans. AIME, 239, 864 (1967).

    Google Scholar 

  16. Lemkey, F. D., et. al., Trans. Met. Soc. AIME, 223, 388 (1965).

    Google Scholar 

  17. Adam, C. M., and L. M. Hogan, Jnl. Aust. I. Metals, 17, 81 (1972).

    Google Scholar 

  18. Marich, S., Jnl. Aust. I. Metals, 17, 18 (1972).

    Google Scholar 

  19. Patterson, R. J., to be published, this Conference Proceedings.

  20. Jang, J. W., W. N. Gill and J. C. Mollendorf, Chem. Eng. Comm. 12, 3 (1981).

    Article  Google Scholar 

  21. Adam, C. M., and R. G. Bourdeau, Proc. Second Int. Conf. on Rapid Solidification Processing, p. 246, Claitors, Baton Rouge, 1980.

    Google Scholar 

  22. Chalmers, B., “Principles of Solidification,” John Wiley and Sons, Inc., New York, 1966.

    Google Scholar 

  23. Flemings, M. C., “Solidification Processing,” McGraw Hill, New York, 1974.

    Google Scholar 

  24. Mullins, W. W., and R. F. Sekerka, Jnl. App. Physics, 35, 444 (1964).

    Article  Google Scholar 

  25. Jones, H., Mater. Sci. Engin. 5, 1 (1969/70).

    Article  Google Scholar 

  26. Jacobs, W. H., A. G. Doggett and M. T. Stowell, Jnl Mats. Sci., 9, 1631 (1974).

    Article  Google Scholar 

  27. Thursfield, G., and M. T. Stowell, Jnl. Mats. Sci., 9, 1644 (1974).

    Article  Google Scholar 

  28. Blank, E., Z. Metallkunde, 63, 315 (1972).

    Google Scholar 

  29. Esslinger, P., Z. Metallkunde, 57, 109 (1966).

    Google Scholar 

  30. Chattopadhyay, K., et. al., Jnl Mats. Sci., 13, 2730 (1978).

    Article  Google Scholar 

  31. Furrer, P., H. Warlimont, and Z. Metallkunde, 64, 236 (1973).

    Google Scholar 

Download references

Acknowledgements

This work was performed under a Defense Advanced Research Projects Agency contract monitored by the Air Force Wright Aeronautical Laboratories, F33615-76-C-5136, “Application of Rapidly Solidfied Alloys.” The continuing support and encouragement of Dr. E. van Reuth (DARPA), Mr. A. Adair and Dr. L. Bidwell (AFWAL), and the senior management of Pratt & Whitney Aircraft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Additional information

The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, C.M. Structure/Property Relationships and Applications of Rapidly Solidified Aluminum Alloys. MRS Online Proceedings Library 8, 411–422 (1981). https://doi.org/10.1557/PROC-8-411

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-8-411

Navigation