Skip to main content
Log in

Carbothermal reduction and nitridation reaction of SiOx and preoxidized SiOx: Formation of α-Si3N4 fibers

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The chemical composition of amorphous SiOx has been analyzed by oxidation studies and is found to be SiO1.7. SiO1.7 appears to be a monophasic amorphous material on the basis of 29Si nuclear magnetic resonance, high resolution electron microscopy, and comparative behavior of a physical mixture of Si and SiO2. Carbothermal reduction and nitridation reactions have been carried out on amorphous SiO1.7 and on amorphous SiO2 obtained from oxidation of SiO1.7. At 1623 K reactions of SiO1.7 lead exclusively to the formation of Si2N2O, while those of SiO2 lead exclusively to the formation of Si3N4. Formation of copious fibers of α-Si3N4 was observed in the latter reaction. It is suggested that the partial pressure of SiO in equilibrium with reduced SiO1.7 and SiO2 during the reaction is the crucial factor that determines the chemistry of the products. The differences in the structures of SiO2 and SiO1.7 have been considered to be the origin of the differences in the SiO partial pressures of the reduction products formed prior to nitridation. The effect of the ratios, C:SiO1.7 and C:SiO2, in the reaction mixture as well as the effect of the temperature on the course of the reactions have also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. Sanderson, Polar Covalence (Academic Press Inc., London, 1983), p. 53.

    Google Scholar 

  2. H.R. Philipp, J. Non-Cryst. Solids 8–10, 627 (1972).

    Article  Google Scholar 

  3. R. Engelke, Th. Roy, H. G. Neumann, and K. Hübner, Phys. Status Solidi 65, 271 (1981).

    Article  CAS  Google Scholar 

  4. R.J. Temkin, J. Non-Cryst. Solids 17, 215 (1975).

    Article  CAS  Google Scholar 

  5. S.C.H. Lin and M. Joshi, Electrochem. Soc. 116, 1740 (1969).

    Article  CAS  Google Scholar 

  6. J.A. Yasaitis and R. Kaplow, J. Appl. Phys. 43, 995 (1972).

    Article  CAS  Google Scholar 

  7. H. Kawamura and M. Matsumura, Solid State Commun. 32, 83 (1979).

    Article  CAS  Google Scholar 

  8. H. Mehner, German Patent 88999, Sept. 30 (1896).

  9. A. Hendry and K. H. Jack, Special Ceramics 6, edited by P. Popper (The Brit. Ceram. Res. Ass., Stoke-on-Trent, England, 1975), p. 199.

    Google Scholar 

  10. J.G. Lee and I.B. Cutler, Nitrogen Ceramics, edited by F.L. Riley (Nordoff International Publishers, Leyden, The Netherlands, 1977), p. 175.

    Chapter  Google Scholar 

  11. H. Inoue, K. Komeya, and A. Tsuge, J. Am. Ceram. Soc. 65, C-205 (1982).

    Article  CAS  Google Scholar 

  12. K. Komeya and H. Inoue, J. Mater. Sci. 10, 1243 (1975).

    Article  CAS  Google Scholar 

  13. A. Szweda, A. Henry, and K. H. Jack, Special Ceramics 7, edited by P. Popper (The Brit. Ceram. Res. Ass., Stoke-on-Trent, England, 1981), p. 107.

    Google Scholar 

  14. M. Mori, H. Inoue, and T. Ochiai, Prog, in Nitrogen Ceramics (Martinus Nijhoff, The Hague, The Netherlands, 1983), p. 149.

    Book  Google Scholar 

  15. Y. W. Cho and J.A. Charles, Mater. Sci. Technol. 7, 289 (1991).

    Article  CAS  Google Scholar 

  16. S.J.P. Durham, K. Shanker, and R.A.L. Drew, J. Am. Ceram. Soc. 74, 31 (1991).

    Article  CAS  Google Scholar 

  17. S.A. Siddiqi and A. Hendry, J. Mater. Sci. 20, 3230 (1982).

    Article  Google Scholar 

  18. D.S. Perera, J. Mater. Sci. 22, 2411 (1985).

    Article  Google Scholar 

  19. S.C. Zhang and W.R. Cannon, J. Am. Ceram. Soc. 67, 691 (1984).

    Article  CAS  Google Scholar 

  20. V. Figush and T. Licko, High Tech Ceramics, edited by P. Vincenzini (Elsevier Science, Amsterdam, 1987), p. 517.

    Google Scholar 

  21. M. Mitomo and Y. Yoshioka, Adv. Ceram. Mater. 2, 253 (1987).

    Article  CAS  Google Scholar 

  22. J.W. Evans and S.K. Chatterji, J. Phys. Chem. 62, 1064 (1958).

    Article  CAS  Google Scholar 

  23. K.J. Huttinger, High Temp. High Press. 1, 221 (1969).

    Google Scholar 

  24. D. R. Meisser and P. Wong, J. Am. Ceram. Soc. 56, 480 (1973).

    Article  Google Scholar 

  25. A. Atkinson, A.J. Moulson, and E.W. Roberts, J. Am. Ceram. Soc. 59, 285 (1976).

    Article  CAS  Google Scholar 

  26. A. J. Moulson, J. Mater. Sci. 14, 1017 (1979).

    Article  CAS  Google Scholar 

  27. H. M. Jennings, J. Mater. Sci. 18, 951 (1983).

    Article  CAS  Google Scholar 

  28. S. M. Boyer and A. J. Moulson, J. Mater. Sci. 13, 1637 (1978).

    Article  CAS  Google Scholar 

  29. W.M. Dawson and A.J. Moulson, J. Mater. Sci. 13, 2289 (1978).

    Article  CAS  Google Scholar 

  30. H. Dervibegovic and F. L. Riley, J. Mater. Sci. 14, 1265 (1979).

    Article  Google Scholar 

  31. F.L. Riley, Nitrogen Ceramics, edited by F. L. Riley (Nordoff International Publishers, Leyden, The Netherlands, 1977), p. 265.

    Chapter  Google Scholar 

  32. Y. Kaneko, K. Ameyama, and H. Iwasaki, J. Soc. Mater. Sci. Jpn. 37, 65 (1988).

    Article  CAS  Google Scholar 

  33. W. E. Knippenberg and Verspui, Silicon Carbide–1968, edited by H. K. Henisch and R. Roy (Pergamon Press, London, 1969), p. 33.

    Chapter  Google Scholar 

  34. S.B. Hanna, A.L.N. Mansour, and A.S. Taha, Trans. J. Brit. Ceram. Soc. 84, 18 (1985).

    CAS  Google Scholar 

  35. R. C. Johnson, J. K. Alley, W. H. Warwick, H. Wilbur, and H. R. Shell, U.S. Patent 3 244 480, April 5 (1966).

  36. M.J. Wang and H. Wada, J. Mater. Sci. 25, 1690 (1990).

    Article  CAS  Google Scholar 

  37. H. Saito, T. Hayashi, and K. Miura, Nippon Kagaku Kaishi, 401 (1982).

  38. T. Hayashi, S. Kawabe, and H. Saito, Yogyo Kyokaishi 94, 19 (1986).

    CAS  Google Scholar 

  39. M. Mizuhara, M. Noguchi, T. Ishihara, A. Satoh, K. Hiramatsu, and Y. Takita, J. Am. Ceram. Soc. 74, 846 (1991).

    Article  CAS  Google Scholar 

  40. A. L. Cunningham and L. G. Davis, SAMPLE 15, 120 (1969).

    Google Scholar 

  41. M. Tanaka and T. Kawabe, Japanese Patent 1324479 (1986).

  42. Y. Kohtoku and K. Masunaga, Japanese Patent Provisional Publication, 61–275199 (1986).

  43. T. Isoda and M. Arai, Jpn. Kokai Tokkyo Koho, Jpn. Patent No. 60–145903 (1985).

  44. K. Niwano, Silicon Nitride-1, edited by S. Sömiya, M. Mitomo, and M. Yoshimura (Elsevier Applied Sciences, London and New York, 1990), Chap. 10.

    Google Scholar 

  45. K. Kijima, N. Setaka, and H. Tanaka, J. Cryst. Growth 24/25, 183 (1974).

    Article  Google Scholar 

  46. S. Motojima, S. Ueno, T. Hattori, and H. Iwanaga, J. Cryst. Growth 96, 383 (1989).

    Article  CAS  Google Scholar 

  47. G. Brauer, Handbook of Preparative Inorganic Chemistry (Academic Press, New York, 1963), Vol. 1, p. 458.

    Google Scholar 

  48. L. Brewer and R. K. Edwards, J. Phys. Chem. 58, 351 (1954).

    Article  CAS  Google Scholar 

  49. R. Dupree, D. Holland, and D. S. Williams, Philos. Mag. 50, L13 (1984a).

    Article  CAS  Google Scholar 

  50. R. Dupree, M.H. Lewis, and M. E. Smith, J. Am. Chem. Soc. 111, 5125 (1989).

    Article  Google Scholar 

  51. R. Dupree, M.H. Lewis, G. Leng-ward, and D.S. Williams, J. Mater. Sci. Lett. 4, 393 (1985).

    Article  CAS  Google Scholar 

  52. N. Wada, S. A. Solin, J. Wong, and S. Prochazka, J. Non-Cryst. Solids 43, 7 (1981).

    Article  CAS  Google Scholar 

  53. K.V. Damodaran, V.S. Nagarajan, and K.J. Rao, J. Non-Cryst. Solids 124, 233 (1990).

    Article  CAS  Google Scholar 

  54. O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 5th ed. (Pergamon Press, New York, 1989), p. 221.

    Google Scholar 

  55. J. C. Brice, The Growth of Crystals from Liquids (North-Holland Publishing Co., Amsterdam, The Netherlands, 1973), Chap. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, P.D., Rao, K.J. Carbothermal reduction and nitridation reaction of SiOx and preoxidized SiOx: Formation of α-Si3N4 fibers. Journal of Materials Research 9, 2330–2340 (1994). https://doi.org/10.1557/JMR.1994.2330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.2330

Navigation