Skip to main content
Log in

Hydrodynamic cavitation as a tool to control macro-, micro-, and nano-properties of inorganic materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hydrodynamic cavitation was shown to be a powerful tool for the synthesis of nanostructured catalysts, ceramics, and piezoelectrics in high phase purities. The macro-, micro-, and nano- properties of solid-state materials could be controlled through adjusting the cavitational regime during synthesis by simple mechanical adjustment. The synthesis of nanostructured titania, piezoelectrics, perovskites, supported and unsupported cobalt molybdates, and Pd and Ag supported on alumina illustrate changes in morphology and size of crystals, growth in a preferred orientation of crystallites, and control of crystallographic strain and size compared to classically prepared materials. The high shear and cavitational forces during synthesis induce micro-strain into the materials and are a function of the Reynolds and cavitation numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.R. Moser, U.S. Patent No. 5 466 646 (1995).

    Article  CAS  Google Scholar 

  2. W.R. Moser, U.S. Patent No. 5 417 956 (1995).

  3. W.R. Moser, T. Giang, S. Nyguen, and O. Kozyuk, in Process Intensification for the Chemical Industry, edited by A. Green (BHR Group Publications, The Book Company, Suffolk, United Kingdom, 1999), Vol. 38, pp. 173–187.

  4. K.S. Suslick, T. Hyeon, M. Fang, and A.A. Cichowlas, Mater. Sci. Eng. A A204, 186 (1995).

    Google Scholar 

  5. K.S. Suslick, Y. Didenko, M.M. Fang, T. Hyeon, K.J. Kolbeck, W.B. McNamara III, M.M. Mdleleni, and M. Wong, Philos. Trans. Roy. Soc. A 357, 335 (1999).

    Article  CAS  Google Scholar 

  6. W.B. McNamara III, Y. Didenko, and K.S. Suslick, Nature 401, 772 (1999).

    Article  CAS  Google Scholar 

  7. O.V. Kozyuk, A.A. Litvinenko, K, B.K. Kravets, and V.V. Berezin, U.S. Patent No. 5 492 654 (20 February 1996).

    Article  CAS  Google Scholar 

  8. O.V. Kozyuk, U.S. Patent No. 5 969 207 (1999).

  9. W. Kraus and G. Noltze, PowderCell for WINDOWS Version 2.3, Berlin, Germany (1999).

  10. J.R. Young, Cavitation (McGraw Hill, New York, 1989).

  11. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Google Scholar 

  12. Powder Diffraction File-2 Sets 1–47, Card 18–117 (1997), Newtown Square, PA.

    Article  CAS  Google Scholar 

  13. Powder Diffraction File -2 Sets 1–47, Card 37–381 (1997), New-town Square, PA.

  14. Powder Diffraction File-2 Sets 1–47, Card 21–570 (1997), Newtown Square, PA.

  15. R. Rajan, R. Kumar, and K.S. Gandhi, Chem. Eng. Sci. 3, 255 (1998).

  16. D.V.P. Naidu, R. Rajan, R. Kumar, K.S. Gandhi, V.H. Arakeri, and S. Chandrasekaran, Chem. Eng. Sci. 49, 877 (1994).

    Article  Google Scholar 

  17. T. Uchiyama, Appl. Math Modelling 22, 235 (1998).

    Article  CAS  Google Scholar 

  18. E. Buckingham, Phys. Rev. 4, 345 (1914).

    Article  Google Scholar 

  19. M.M. Mdleni, T. Hyeon, and K.S. Suslick, J. Am. Chem. Soc. 120, 6189 (1998).

    Article  Google Scholar 

  20. J.R. Groza, S. H. Risbud, and K. Yamazaki, J. Mater. Res. 7, 2643 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.R. Moser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Find, J., Emerson, S., Krausz, I. et al. Hydrodynamic cavitation as a tool to control macro-, micro-, and nano-properties of inorganic materials. Journal of Materials Research 16, 3503–3513 (2001). https://doi.org/10.1557/JMR.2001.0481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0481

Navigation