Skip to main content
Log in

Size effects of nanoindentation creep

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The size effects on indentation creep were studied on single-crystal Ni3Al, polycrystalline pure Al, and fused quartz samples at room temperature. The stress exponents were measured by monitoring the displacement during constant indentation loads after correction for thermal drift effects. The stress exponents were found to exhibit a very strong size effect. In the two metals Al and Ni3Al, the stress exponent for very small indents is very small, and for Al, this even approaches unity, suggesting that linear diffusional flow may be the controlling mechanism. The stress exponents in these two metals rise rapidly to over 100 as the indent size gets larger, indicating a rapid change of the dominating mechanism to climb-controlled to eventually glide-controlled events. In fused quartz, the stress exponent also exhibits a sharply rising trend as the indent size increases. The stress exponent is also close to unity at the smallest indents studied, and it rises rapidly to a few tens as the indent size gets larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.F. Robertson and M.C. Fivel, J. Mater. Res. 14, 2251 (1999).

    Article  CAS  Google Scholar 

  2. Y.L. Chiu and A.H.W. Ngan, Acta Mater. 50, 2677 (2002).

    Article  CAS  Google Scholar 

  3. M.J. Mayo and W.D. Nix, Acta Metall. 36, 2183 (1988).

    Article  CAS  Google Scholar 

  4. W.R. LaFontaine, B. Yost, R.D. Black, and C.Y. Li, J. Mater. Res. 5, 2100 (1990).

    Article  CAS  Google Scholar 

  5. S.P. Baker, T.W. Barbee, Jr., and W.D. Nix, in Thin Films: Stresses and Mechanical Properties III, edited by W.D. Nix, J.C. Bravman, E. Arzt, and L.B. Freund (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 319.

    Google Scholar 

  6. B.N. Lucas and W.C. Oliver, in Thin Films: Stresses and Mechanical Properties III, edited by W.D. Nix, J.C. Bravman, E. Arzt, and L.B. Freund (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 337.

    Google Scholar 

  7. K.M. O’Connor and P.A. Cleveland, in Thin Films: Stresses and Mechanical Properties IV, edited by P.H. Townsend, T.P. Weihs, J. Sanchez Jr., and P. Borgesen (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 495.

    Google Scholar 

  8. V. Raman and R. Berriche, J. Mater. Res. 7, 627 (1992).

    Article  CAS  Google Scholar 

  9. B.N. Lucas and W.C. Oliver, Metall. Mater. Trans. 30A, 601 (1999).

    Article  CAS  Google Scholar 

  10. G. Feng and A.H.W. Ngan, Scr. Mater. 45, 971 (2001).

    Article  CAS  Google Scholar 

  11. G. Feng and A.H.W. Ngan, J. Mater. Res. 17, 660 (2002).

    Article  CAS  Google Scholar 

  12. A.H.W. Ngan and B. Tang, J. Mater. Res. 17, 2604 (2002).

    Article  CAS  Google Scholar 

  13. B. Tang and A.H.W. Ngan, J. Mater. Res. 18, 1141 (2003).

    Article  CAS  Google Scholar 

  14. S.A. Syed and J.B. Pethica, Philos. Mag. A 76, 1105 (1997).

    Article  Google Scholar 

  15. W.B. Li, H.L. Henshall, R.M. Hooper, and K.E. Easterling, Acta Metall. Mater. 39, 3099 (1991).

    Article  CAS  Google Scholar 

  16. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  17. P.M. Sargent, Use of the Indentation Size Effect on Microhardness for Materials Characterization, edited by P.J. Blau and B.R. Lawn (American Society for Testing and Materials, Philadelphia, PA, STP 889, pp. 225–241.

  18. W.D. Nix and H. Gao, Journal of the Mechanics and Physics of Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  19. YA.M. Soifer and A.V. Alr, Mater. Lett. 56, 127 (2002).

    Article  CAS  Google Scholar 

  20. A.A. Elmustafa and D.S. Stone, Acta Mater. 50, 3641 (2002).

    Article  CAS  Google Scholar 

  21. J.P. Poirier, Creep of CrystalsHigh Temperature Deformation Processes in Metals, Ceramics and Minerals (Cambridge University Press, Cambridge, U.K., 1985).

    Book  Google Scholar 

  22. A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna, Proc. R Soc. London, Ser. A 441, 97 (1993).

    Google Scholar 

  23. M. Sakai, Philos. Mag. A 82, 1841 (2002).

    Article  CAS  Google Scholar 

  24. M. Sakai and S. Shimizu, J. Am. Ceram. Soc. 85, 1210 (2002).

    Article  CAS  Google Scholar 

  25. T.P. Weihs and J.B. Pethica, in Thin Films: Stresses and Mechanical Properties III, edited by W.D. Nix, J.C. Bravman, E. Arzt, and L.B. Freund (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 319.

    Google Scholar 

  26. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  27. Y.L. Chiu and A.H.W. Ngan, Acta Mater. 50, 1599 (2002).

    Article  CAS  Google Scholar 

  28. G. Feng, M.Phil. Thesis, University of Hong Kong, Hong Kong, Japan, (2001).

  29. W.B. Li and R. Warren, Acta Metall. Mater. 41, 3065 (1993).

    Article  CAS  Google Scholar 

  30. J.R. Spingarn, D.M. Barnett, and W.D. Nix, Acta Metall. 27, 1549 (1979).

    Article  CAS  Google Scholar 

  31. R.W. Ballufi, Phys. Status Solidi 42, 11 (1970).

    Article  Google Scholar 

  32. P.B. Hirsch, Prog. Mater. Sci. 36, 63 (1992).

    Article  CAS  Google Scholar 

  33. A.S. Argon, Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Ngan, A.H.W. Size effects of nanoindentation creep. Journal of Materials Research 19, 513–522 (2004). https://doi.org/10.1557/jmr.2004.19.2.513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.2.513

Navigation