Skip to main content
Log in

Effect of silicon addition on surface morphology and structural properties of titanium nitride films grown by reactive unbalanced direct current-magnetron sputtering

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thin films of Ti1−x−ySixNy were produced on unheated Si(100) substrates by reactive unbalanced dc-magnetron sputtering of titanium and silicon in an Ar–N2 gas mixture. The effects of silicon incorporation on surface morphology and structural properties of these films as well as the influence of postdeposition annealing have been studied. These films were characterized ex situ in terms of their core-level electron bonding configuration by x-ray photoelectron spectroscopy, their microstructure by cross-sectional transmission electron microscopy and x-ray diffraction, their hardness by nanoindentation measurements, and their roughening kinetics by atomic force microscopy (AFM) with the scaling analysis. It was found that a linear increase in the Si concentration of the films was observed with increasing Si target current up to 2 A whereas the reverse trend was seen for the Ti concentration. The films consisted of 15–20-nm-sized TiN crystallites embedded in an amorphous SiNx matrix. They had a hardness of about 32.8 GPa with silicon concentration x = 0.1. The improved mechanical properties of Ti1−x SixNy films with the addition of Si into TiN were attributed to their densified microstructure with development of fine grain size and reduced surface roughness. The reduction in grain size has been supported by means of a Monte Carlo simulation that reveals that the average size of TiN grains decreases with the volume fraction of amorphous SiNx approximately according to a power law, showing a reasonable agreement with the experimental results. By applying the height–height correlation functions to the measured AFM images, a steady growth roughness exponent α = 0.89 ± 0.05 was determined for all the films with different Si additions. It was also found that the nanocomposite films were thermodynamically stable up to 800 °C. The effect of thin SiNx layer in stabilizing nanocrystalline TiN structure is also elucidated and explained on the basis of structural and thermodynamic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Li, Y. Shi, and H. Peng, Plasma Chem. Plasma Process 12, 287 (1992).

    Article  Google Scholar 

  2. S. Veprek, S. Reiprich, and L. Shizhi, Appl. Phys. Lett. 66, 2640 (1995).

    Article  CAS  Google Scholar 

  3. S. Veprek and S. Reiprich, Thin Solid Films 268, 64 (1995).

    Article  CAS  Google Scholar 

  4. E.A. Lee and K.H. Kim, Thin Solid Films 420-421, 371 (2002).

    Article  CAS  Google Scholar 

  5. M. Diserens, J. Patscheider, and F. Levy, Surf. Coat. Technol. 120-121, 158 (1999).

    Article  CAS  Google Scholar 

  6. W.H. Lee, S.K. Park, B.J. Kang, P.J. Reucroft, and J.G. Lee, J. Electron. Mater. 30, 84 (2001).

    Article  CAS  Google Scholar 

  7. L. Rebouta, C.J. Tavares, R. Aimo, Z. Wang, K. Pischow, E. Alves, T.C. Rojas, and J.A. Odriozola, Surf. Coat. Technol. 133-134, 234 (2000).

    Article  CAS  Google Scholar 

  8. M. Diserens, J. Patscheider, and F. Levy, Surf. Coat. Technol. 108-109, 241 (1998).

    Article  CAS  Google Scholar 

  9. J.F. Moulder, W.F. Stichle, P.E. Sobol, and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, edited by J. Chastain and R.C. King, Jr. (Physical Electronics, Eden Prairie, MN, 1995).

    Google Scholar 

  10. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  11. P.W. Shum, Z.F. Zhou, K.Y. Li, and Y.G. Shen, Mater. Sci. Eng. B 100, 199 (2003).

    Article  Google Scholar 

  12. I. Bertóti, M. Mohai, J.L. Sullivan, and S.O. Saied, Appl. Surf. Sci. 84, 357 (1995).

    Article  Google Scholar 

  13. X.P. Hu, Z.G. Han, G.Y. Li, and M.Y. Gu, J. Vac. Sci. Technol. A 20, 1921 (2002).

    Article  CAS  Google Scholar 

  14. S.H. Kim, J.K. Kim, and K.H. Kim, Thin Solid Films 420, 360 (2002).

    Article  Google Scholar 

  15. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1954).

    Google Scholar 

  16. D.J. Srolovitz, J. Vac. Sci. Technol. A 4, 2925 (1986).

    Article  CAS  Google Scholar 

  17. D.J. Srolovitz, A. Mazor, and B.G. Bukiet, J. Vac. Sci. Technol. A 6, 2371 (1988).

    Article  CAS  Google Scholar 

  18. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.T. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  CAS  Google Scholar 

  19. T. Halpin-Healy and Y-C. Zhang, Phys. Rep. 254, 215 (1995).

    Article  Google Scholar 

  20. M. Ziegert and M. Plischke, Phys. Rev. Lett. 73, 1517 (1994).

    Article  Google Scholar 

  21. Z.W. Lai and S.D. Sarma, Phys. Rev. Lett. 66, 2348 (1991).

    Article  CAS  Google Scholar 

  22. Z-J. Liu, N. Jiang, Y.G. Shen, and Y-W. Mai, J. Appl. Phys. 92, 3559 (2002).

    Article  CAS  Google Scholar 

  23. J. Pelleg, L.Z. Zevin, and S. Lungo, Thin Solid Films 197, 117 (1991).

    Article  CAS  Google Scholar 

  24. T. Nakajima, K Watanabe, and N. Watanabe, J. Electrochem. Soc. 134, 3175 (1987).

    Article  CAS  Google Scholar 

  25. C.R. Brundle, J. Vac. Sci. Technol. 13, 301 (1976).

    Article  CAS  Google Scholar 

  26. CRC Handbook of Chemistry and Physics, 72nd ed., edited by D.R. Lide (CRC Press, Boca Raton, FL, 1991/1992).

  27. S. Veprek, J. Vac. Sci. Technol. A 17, 2401 (1999).

    Article  CAS  Google Scholar 

  28. J. Musil, Surf. Coat. Technol. 125, 322 (2000).

    Article  CAS  Google Scholar 

  29. B.Q. Li, I. Kojima, and J.M. Zuo, J. Appl. Phys. 91, 4082 (2002).

    Article  CAS  Google Scholar 

  30. G. Palasantzas, Phys. Rev. B 48, 14472 (1993).

    Article  CAS  Google Scholar 

  31. S.K. Sinha, E.B. Sirota, S. Garoff, and H.B. Stanley, Phys. Rev. B 38, 2297 (1988).

    Article  CAS  Google Scholar 

  32. Y.G. Shen, Y-W. Mai, D.R. McKenzie, Q.C. Zhang, W.D. McFall, and W.E. McBride, J. Appl. Phys. 88, 1380 (2000).

    Article  CAS  Google Scholar 

  33. Y.G. Shen, Y-W. Mai, Q.C. Zhang, D.R. McKenzie, W.D. McFall, and W.E. McBride, J. Appl. Phys. 87, 177 (2000).

    Article  CAS  Google Scholar 

  34. Y.G. Shen, J. Yao, D.J. O’Connor, B.V. King, and R.J. MacDonald, Phys. Rev. B 56, 9894 (1997).

    Article  CAS  Google Scholar 

  35. Y.G. Shen and Y-W. Mai, J. Mater. Res. 15, 2437 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y.G., Liu, Z.J., Jiang, N. et al. Effect of silicon addition on surface morphology and structural properties of titanium nitride films grown by reactive unbalanced direct current-magnetron sputtering. Journal of Materials Research 19, 523–534 (2004). https://doi.org/10.1557/jmr.2004.19.2.523

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.2.523

Navigation