Skip to main content

Advertisement

Log in

A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Described is a room-temperature hydrogen sensor comprised of a TiO2-nanotube array able to recover substantially from sensor poisoning through ultraviolet (UV) photocatalytic oxidation of the contaminating agent; in this case, various grades of motor oil. The TiO2 nanotubes comprising the sensor are a mixture of both anatase and rutile phases, having nominal dimensions of 22-nm inner diameter, 13.5-nm wall thickness, and 400-nm length, coated with a 10-nm-thick noncontinuous palladium layer. At 24 °C, in response to 1000 ppm of hydrogen, the sensors show a fully reversible change in electrical resistance of approximately 175,000%. Cyclic voltammograms using a 1 N KOH electrolyte under 170 mW/cm2 UV illumination show, for both a clean and an oil-contaminated sensor, anodic current densities of approximately 28 mA/cm2 at 2.5 V. The open circuit oxidation potential shows a shift from 0.5 V to −0.97 V upon UV illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, and C.A. Grimes, Adv. Mater. 15, 624 (2003).

    CAS  Google Scholar 

  2. M.C. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M.C. Casale, and M. Notaro, Sens. Actuators B 58, 310 (1999).

    CAS  Google Scholar 

  3. N. Savage, B. Chwieroth, A. Ginwalla, B.R. Patton, S.A. Akbar, and P.K. Datta, Sens. Actuators B 79, 17 (2001).

    CAS  Google Scholar 

  4. V. Guidi, M.C. Carotta, M. Ferroni, G. Martinelli, L. Paglialonga, E. Comini, and G. Sberveglieri, Sens. Actuators B 57, 197 (1999).

    CAS  Google Scholar 

  5. A. Ruiz, J. Arbiol, A. Cirera, A. Cornet, and J.R. Morante, Mater. Sci. Eng. C 19, 105 (2002).

    Google Scholar 

  6. R.W. Matthews, Water Research 20, 569 (1986).

    CAS  Google Scholar 

  7. A. Mills and S.L. Hunte, J. Photochem. Photobio. A 108, 1 (1997).

    CAS  Google Scholar 

  8. I.K. Konstantinou and T.A. Albanis, Appl. Catal. B 42, 319 (2003).

    CAS  Google Scholar 

  9. K. Tanaka and K.S.N. Reddy, Appl. Catal. B 39, 305 (2002).

    CAS  Google Scholar 

  10. M.M. Higarashi and W.F. Jardim, Catalysis Today 76, 201 (2002).

    CAS  Google Scholar 

  11. S. Malato, J. Blanco, C. Richter, P. Fernández, and M.I. Maldonado, Solar Energy Materials and Solar Cells 64, 1 (2000).

    CAS  Google Scholar 

  12. S. Chiron, A. Fernandez-Alba, A. Rodriguez, and E. Garcia-Calvo, Water Research 34, 366 (2000).

    CAS  Google Scholar 

  13. E. Vulliet, J-M. Chovelon, C. Guillard, and J-M. Herrmann, J. Photochem. Photobio. A 159, 71 (2003).

    CAS  Google Scholar 

  14. J.C. Garcia and K. Takashima, J. Photochem. Photobio. A 155, 215 (2003).

    CAS  Google Scholar 

  15. A. Vidal, Z. Dinya, F. Mogyorodi, Jr., and F. Mogyorodi, Appl. Catal. B 21, 259 (1999).

    CAS  Google Scholar 

  16. E. Moctezuma, E. Leyva, E. Monreal, N. Villegas, and D. Infante, Chemosphere 39, 511 (1999).

    CAS  Google Scholar 

  17. V. Maurino, C. Minero, E. Pelizzetti, and M. Vincenti, Colloids Surf. A 151, 329 (1999).

    CAS  Google Scholar 

  18. E. Pelizzetti, V. Maurino, C. Minero, O. Zerbinati, and E. Borgarello, Chemosphere 18, 1437 (1989).

    CAS  Google Scholar 

  19. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, and E.C. Dickey, J. Mater. Res. 16, 3331 (2001).

    CAS  Google Scholar 

  20. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Chem. Rev. 95, 69 (1995).

    CAS  Google Scholar 

  21. R. Wang, K Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Nature 388, 431 (1997).

    CAS  Google Scholar 

  22. N. Sakai, A. Fujishama, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B 107, 1028 (2003).

    CAS  Google Scholar 

  23. P. Zeman and S. Takabayashi, J. Vac. Sci. Technol. A 20, 388 (2002).

    CAS  Google Scholar 

  24. A. Mills and S-K Lee, J. Photochem. Photobiol. A 152, 233 (2002).

    CAS  Google Scholar 

  25. V. Rome, P. Pichat, C. Guillard, T. Chopin, and C. Lehaut, New J. Chem. 23, 365 (1999).

    Google Scholar 

  26. D.X. Who, J. Photochem. Photobiol. 137, 53 (2000).

    Google Scholar 

  27. D. Beydoun, R. Amal, G Low, and S. McEvoy, Journal of Nanoparticle Research 1, 439 (1999).

    CAS  Google Scholar 

  28. O.K. Varghese, M. Paulose, D. Gong, C.A. Grimes, and E.C. Dickey, J. Mater. Res. 18, 156 (2003).

    CAS  Google Scholar 

  29. B. Ohtani, Y. Ogawa, and S. Nishimoto, J. Phys. Chem. B 101, 3746 (1997).

    CAS  Google Scholar 

  30. M.A. Pick, J.W. Davenport, M. Strongin, and G.J. Dienes, Phys. Rev. Lett. 43, 286 (1979).

    CAS  Google Scholar 

  31. J. Bodzenta, B. Burak, Z. Gacek, W.P. Jakubik, S. Kochowski, and M. Urbanczyk, Sens. Actuators B 87, 82 (2002).

    CAS  Google Scholar 

  32. M. Abdullah, G.K-C. Low, and R.W. Matthews, J. Phys. Chem. 94, 6820 (1990).

    CAS  Google Scholar 

  33. S. Zheng, L. Gao, Q. Zhang, and J. Sun, J. Solid State Chem. 162, 138 (2001).

    CAS  Google Scholar 

  34. C-M. Wang, A. Heller, and H. Gerischer, J. Am. Chem. Soc. 114, 5230 (1992).

    CAS  Google Scholar 

  35. J. Papp, H-S. Shen, R. Kershaw, K. Dwight, and A. Wold, Chem. Mater. 5, 284 (1993).

    CAS  Google Scholar 

  36. C-C. Wang, Z. Zhang, and J.Y. Ying, Nanostruct. Mater. 9, 583 (1997).

    CAS  Google Scholar 

  37. Z. Zhang, C-C. Wang, R. Zakaria, and J.Y. Ying, J. Phys. Chem. B 102, 10871 (1998).

    CAS  Google Scholar 

  38. A. Hagfeldt and M. Graetzel, Chem. Rev. 95, 49 (1995).

    CAS  Google Scholar 

  39. M.M. Jaksic, International Journal of Hydrogen Energy 26, 559 (2001).

    CAS  Google Scholar 

  40. A. Zaban, A. Meier, and B.A. Gregg, J. Phys. Chem. B 101, 7985 (1997).

    CAS  Google Scholar 

  41. L.N. Lewis, Chem. Rev. 93, 2693 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mor, G.K., Carvalho, M.A., Varghese, O.K. et al. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. Journal of Materials Research 19, 628–634 (2004). https://doi.org/10.1557/jmr.2004.19.2.628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.2.628

Navigation