Skip to main content
Log in

Microstructure and compressive properties of chill-cast Mg-Al-Ca alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mg82Al8Ca10 was determined to be a pseudo-binary eutectic composition [liquid solidifying into α-Mg and (Mg,Al)2Ca in the Mg-Al-Ca ternary system with a eutectic melting temperature of 789 K]. A series of Mgx(Al0.44Ca0.56)100−x alloys, where 75 ≤ x ≤ 95, were cast into Φ4 mm rods using copper mold casting. The eutectic alloy exhibits the highest fracture strength, σf = 609 MPa. For 75 ≤ x ≥ 79, the alloys have hypereutectic microstructures with Mg2Ca as the primary phase, and σf is reduced together with diminishing plasticity. For hypoeutectic alloys with 86 ≤ x ≥ 95, the volume fraction of the primary α-Mg dendrites dispersed in the eutectic matrix increases with increasing x, resulting in a gradual decrease of the yield and fracture strengths but improved plastic strain to as large as 9%. The refined microstructures created in bulk samples via chill casting can lead to a good combination of strength and plasticity, with specific strength superior to commercial Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.U. Kainer, F. Von Buch The current state of technology and potential for further development of magnesium applications, in Magnesium Alloys and Technology, edited by K.U. Kainer, translated by F. Kaiser (Wiley-VCH Verlag, Weinheim, Germany, 2003).

  2. A. Kato, H. Horikiri, A. Inoue, T. Masumoto: Microstructure and mechanical properties of bulk Mg70Ca10Al20 alloys produced by extrusion of atomized amorphous powders. Mater. Sci. Eng. A179/180, 707 (1994).

    Article  Google Scholar 

  3. C. Shaw, H. Jones: Structure and mechanical properties of two Mg–Al–Ca alloys consolidated from atomized powder. Mater. Sci. Technol. 15, 78 (1999).

    Article  CAS  Google Scholar 

  4. A. Inoue, A. Kato, T. Zhang, S.G. Kim, T. Masumoto: Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans. JIM 32, 609 (1991).

    Article  CAS  Google Scholar 

  5. H.G. Kang, E.S. Park, W.T. Kim, D.H. Kim, H.K. Cho: Fabrication of bulk Mg–Cu–Ag–Y glassy alloy by squeeze casting. Mater. Trans. JIM 41, 846 (2000).

    Article  CAS  Google Scholar 

  6. K. Amiya, A. Inoue: Thermal stability and mechanical properties of Mg–Y–Cu–M (M = Ag, Pd) bulk amorphous alloys. Mater. Trans. JIM 41, 1460 (2000).

    Article  CAS  Google Scholar 

  7. H. Men, Z.Q. Hu, J. Xu: Bulk metallic glass formation in the Mg–Cu–Zn–Y system. Scripta Mater. 46, 699 (2002).

    Article  CAS  Google Scholar 

  8. H. Ma, E. Ma, J. Xu: A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability. J. Mater. Res. 18, 2288 (2003).

    Article  CAS  Google Scholar 

  9. H. Men, D.H. Kim: Fabrication of ternary Mg–Cu–Gd bulk metallic glass with high glass-forming ability under air atmosphere. J. Mater. Res. 18, 1502 (2003).

    Article  CAS  Google Scholar 

  10. H. Men, W.T. Kim, D.H. Kim: Fabrication and mechanical properties of Mg65Cu15Ag5Pd5Gd10 bulk metallic glass. Mater. Trans. 44, 2141 (2003).

    Article  CAS  Google Scholar 

  11. G.Y. Yuan, T. Zhang, A. Inoue: Thermal stability, glass-forming ability and mechanical properties of Mg–Y–Zn–Cu glassy alloys. Mater. Trans. 44, 2271 (2003).

    Article  CAS  Google Scholar 

  12. H. Ma, Q. Zheng, J. Xu, Y. Li, E. Ma: Doubling the critical size for bulk metallic glass formation in the Mg–Cu–Y ternary system. J. Mater. Res. 20, 2252 (2005).

    Article  CAS  Google Scholar 

  13. E.S. Park, D.H. Kim: Formation of Mg–Cu–Ni–Ag–Zn–Y–Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere. J. Mater. Res. 20, 1465 (2005).

    Article  CAS  Google Scholar 

  14. H.A. Bruck, T. Christman, A.J. Rosakis, W.L. Johnson: Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429 (1994).

    Article  CAS  Google Scholar 

  15. A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yavari: Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater. 2, 661 (2003).

    Article  CAS  Google Scholar 

  16. F. Szuecs, C.P. Kim, W.L. Johnson: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).

    Article  CAS  Google Scholar 

  17. M.L. Lee, Y. Li, C.A. Schuh: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).

    Article  CAS  Google Scholar 

  18. H. Ma, J. Xu, E. Ma: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003).

    Article  CAS  Google Scholar 

  19. Y.K. Xu, J. Xu: Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites. Scripta Mater. 49, 843 (2003).

    Article  CAS  Google Scholar 

  20. Y.K. Xu, H. Ma, J. Xu, E. Ma: Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater. 53, 1857 (2005).

    Article  CAS  Google Scholar 

  21. G. He, J. Eckert, W. Löser, L. Schultz: Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).

    Article  CAS  Google Scholar 

  22. G. He, W. Löser, J. Eckert: In situ formed Ti–Cu–Ni–Sn–Ta nanostructure-dendrite composite with large plasticity. Acta Mater. 51, 5223 (2003).

    Article  CAS  Google Scholar 

  23. Q.L. Dai, B.B. Sun, M.L. Sui, G. He, Y. Li, J. Eckert, W.K. Luo, E. Ma: High-performance bulk Ti–Cu–Ni–Sn–Ta nanocomposites based on a dendrite-eutectic microstructure. J. Mater. Res. 19, 2557 (2004).

    Article  CAS  Google Scholar 

  24. A.A. Luo, M.P. Balogh, B.R. Powell: Creep and microstructure of magnesium–aluminum–calcium based alloys. Metall. Mater. Trans. A33, 567 (2002).

    Article  Google Scholar 

  25. R. Ninomiya, T. Ojiro, K. Kubota: Improved heat resistance of Mg–Al alloys by the Ca addition. Acta Metall. Mater. 43, 669 (1995).

    Article  CAS  Google Scholar 

  26. M. Liu, Q.D. Wang, Z.L. Liu, G.Y. Yuan, G.H. Wu, Y.P. Zhu, W.J. Ding: Behavior of Mg–Al–Ca alloy during solution heat treatment at 415°C. J. Mater. Sci. Lett. 21, 1281 (2002).

    Article  CAS  Google Scholar 

  27. K. Ozturk, Y. Zhong, A.A. Luo, Z.K. Liu: Creep resistant Mg–Al–Ca alloys: Computational thermodynamics and experimental investigation. JOM 55, 40 (2003).

    Article  CAS  Google Scholar 

  28. V.G. Tkachenko, V.G. Khoruzhaya, K.A. Meleshevich, M.V. Karpets, V.V. Frizel: Phase equilibria in the Mg–Al–Ca system (region 50–100 mass% Mg). Powder Metall. Metal Ceram. 42, 268 (2003).

    Article  Google Scholar 

  29. J. Gröbner, D. Kevorkov, I. Chumak, Schmid-R. Fetzer: Experimental investigation and thermodynamic calculation of ternary Al–Ca–Mg phase equilibria. Z. Metallkd. 94, 976 (2003).

    Article  Google Scholar 

  30. A. Suzuki, N.D. Saddock, J.W. Jones, T.M. Pollock: Solidification paths and eutectic intermetallic phases in Mg–Al–Ca ternary alloys. Acta Mater. 53, 2823 (2005).

    Article  CAS  Google Scholar 

  31. A. Suzuki, N.D. Saddock, J.W. Jones, T.M. Pollock: Structure and transition of eutectic (Mg,Al)2Ca Laves phase in a die-cast Mg–Al–Ca base alloy. Scripta Mater. 51, 1005 (2004).

    Article  CAS  Google Scholar 

  32. H. Biloni, W.J. Boettinger Solidification, in Physical Metallurgy, 4th ed. edited by R.W. Cahn and P. Haasen. (Elsevier Science BV, Switzerland, 1996), p. 765.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, LL., Ma, H., Liu, T. et al. Microstructure and compressive properties of chill-cast Mg-Al-Ca alloys. Journal of Materials Research 21, 613–622 (2006). https://doi.org/10.1557/jmr.2006.0074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0074

Navigation