Skip to main content
Log in

Nanoindentation and contact-mode imaging at high temperatures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Technical issues surrounding the use of nanoindentation at elevated temperatures are discussed, including heat management, thermal equilibration, instrumental drift, and temperature-induced changes to the shape and properties of the indenter tip. After characterizing and managing these complexities, quantitative mechanical property measurements are performed on a specimen of standard fused silica at temperatures up to 405 °C. The extracted values of hardness and Young’s modulus are validated against independent experimental data from conventional mechanical tests, and accuracy comparable to that obtained in standard room-temperature nanoindentation is demonstrated. In situ contact-mode images of the surface at temperature are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bhushan: Nanomechanical properties of solid surfaces and thin films, in Handbook of Micro/Nano Tribology, edited by B. Bhushan (CRC Press, Boca Raton, FL, 1999), p. 433.

  2. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  3. T.A. Venkatesh, Van K.J. Vliet, A.E. Giannakopoulos, S. Suresh: Determination of elasto-plastic properties by instrumented sharp indentation: Guidelines for property extraction. Scripta Mater. 42, 833 (2000).

    Article  CAS  Google Scholar 

  4. R. Saha, W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  5. A.C. Fischer-Cripps: Nanoindentation (Springer, New York, 2002).

    Book  Google Scholar 

  6. G. Feng, A.H.W. Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).

    Article  CAS  Google Scholar 

  7. S. Suresh, T.G. Nieh, B.W. Choi: Nano-indentation of copper thin films on silicon substrates. Scripta Mater. 41, 951 (1999).

    Article  CAS  Google Scholar 

  8. N.I. Tymiak, D.E. Kramer, D.F. Bahr, J.T. Wyrobek, W.W. Gerberich: Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49, 1021 (2001).

    Article  CAS  Google Scholar 

  9. Y. Choi, S. Suresh: Nanoindentation of patterned metal lines on a Si substrate. Scripta Mater. 48, 249 (2003).

    Article  CAS  Google Scholar 

  10. A.G. Atkins, A. Silverio, D. Tabor: Indentation hardness and the creep of solids. J. Inst. Met. 94, 369 (1966).

    CAS  Google Scholar 

  11. T.O. Mulhearn, D. Tabor: Creep and hardness of metals: A physical study. J. Inst. Met. 89, 7 (1960).

    CAS  Google Scholar 

  12. T.R.G. Kutty, C. Ganguly, D.H. Sastry: Development of creep curves from hot indentation hardness data. Scripta Mater. 34, 1833 (1996).

    Article  CAS  Google Scholar 

  13. W.B. Li, J.L. Henshall, R.M. Hooper, K.E. Easterling: The mechanisms of indentation creep. Acta Metall. Mater. 39, 3099 (1991).

    Article  CAS  Google Scholar 

  14. P.M. Sargent, M.F. Ashby: Indentation creep. Mater. Sci. Technol. 8, 594 (1992).

    Article  CAS  Google Scholar 

  15. B.Y. Farber, S.Y. Yoon, K.P.D. Lagerlof, A.H. Heuer: Microplasticity during high-temperature indentation and the Peierls potential in sapphire (α–Al2O3) single-crystals. Phys. Status Solidi A 137, 485 (1993).

    Article  CAS  Google Scholar 

  16. B.Y. Farber, V.I. Orlov, A.H. Heuer: Energy dissipation during high-temperature displacement-sensitive indentation in cubic zirconia single crystals. Phys. Status Solidi A166, 115 (1998).

    Article  Google Scholar 

  17. B.Y. Farber, V.I. Orlov, V.I. Nykitenko, A.H. Heuer: Mechanisms of energy dissipation during displacement-sensitive indentation in Ge single crystals at elevated temperatures. Philos. Mag. A78, 671 (1998).

    Article  Google Scholar 

  18. B.N. Lucas, W.C. Oliver: Time dependent indentation testing at non-ambient temperatures utilizing the high temperature mechanical properties microprobe, in Thin Films: Stresses and Mechanical Properties V, edited by S.P. Baker, C.A. Ross, P.H. Townsend, C.A. Volkert, and BøP. rgesen (Mater. Res. Soc. Symp. Proc. 356 Pittsburgh, PA, 1995), p. 137.

    Google Scholar 

  19. B.N. Lucas, W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. 30A, 601 (1999).

    Article  CAS  Google Scholar 

  20. J.F. Smith, S. Zheng: High temperature nanoscale mechanical property measurements. Surf. Eng. 16, 143 (2000).

    Article  CAS  Google Scholar 

  21. B.D. Beake, J.F. Smith: High-temperature nanoindentation testing of fused silica and other materials. Philos. Mag. A82, 2179 (2002).

    Article  Google Scholar 

  22. B.D. Beake, S.R. Goodes, J.F. Smith: Nanoscale materials testing under industrially relevant conditions: High-temperature nanoindentation testing. Z. Metallkde. 94, 798 (2003).

    Article  CAS  Google Scholar 

  23. A.A. Volinsky, N.R. Moody, W.W. Gerberich: Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. J. Mater. Res. 19, 2650 (2004).

    Article  CAS  Google Scholar 

  24. D.F. Bahr, D.E. Wilson, D.A. Crowson: Energy considerations regarding yield points during indentation. J. Mater. Res. 14, 2269 (1999).

    Article  CAS  Google Scholar 

  25. D.E. Kramer, K.B. Yoder, W.W. Gerberich: Surface constrained plasticity: Oxide rupture and the yield point process. Philos. Mag. A81, 2033 (2001).

    Article  Google Scholar 

  26. A.C. Lund, A.M. Hodge, C.A. Schuh: Incipient plasticity during nanoindentation at elevated temperatures. Appl. Phys. Lett. 85, 1362 (2004).

    Article  CAS  Google Scholar 

  27. C.A. Schuh, J.K. Mason, A.C. Lund: Quantitative insight into dislocation nucleation from high temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).

    Article  CAS  Google Scholar 

  28. C.A. Schuh, A.C. Lund, T.G. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).

    Article  CAS  Google Scholar 

  29. H.S. Carslaw, J.C. Jaeger: Conduction of Heat in Solids (Clarendon Press, Oxford, UK, 1959).

    Google Scholar 

  30. J.E. Graebner, S. Jin, G.W. Kammlott, J.A. Herb, C.F. Gardinier: Large anisotropic thermal-conductivity in synthetic diamond films. Nature 359, 401 (1992).

    Article  CAS  Google Scholar 

  31. Technical data sheet, Macor, Corning, Inc., Corning, NY.

  32. J. Thurn, R.F. Cook: Simplified area function for sharp indenter tips in depth-sensing indentation. J. Mater. Res. 17, 1143 (2002).

    Article  CAS  Google Scholar 

  33. W.C. Oliver, G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  34. T.W. Clyne, P.J. Withers: An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, UK, 1993).

    Book  Google Scholar 

  35. A.J. Bushby, D.J. Dunstan: Plasticity size effects in nanoindentation. J. Mater. Res. 19, 137 (2004).

    Article  CAS  Google Scholar 

  36. M. Suganuma, M.V. Swain: Simple method and critical comparison of frame compliance and indenter area function for nanoindentation. J. Mater. Res. 19, 3490 (2004).

    Article  CAS  Google Scholar 

  37. K. Herrmann, N.M. Jennett, S. Kuypers, I. McEntegaart, C. Ingelbrecht, U. Hangen, T. Chudoba, F. Pohlenz, F. Menelao: Investigation of the properties of candidate reference materials suited for the calibration of nanoindentation instruments. Z. Metallkde. 94, 802 (2003).

    Article  CAS  Google Scholar 

  38. Handbook of Glass Data, edited by O.V. Mazurin, M.V. Streltsina, and T.P. Shvaiko-Shvaikovskaya (Elsevier, Amsterdam, The Netherlands, 1983).

    Google Scholar 

  39. N. Shinkai, R.C. Bradt, G.E. Rindone: Fracture-toughness of fused SiO2 and float glass at elevated-temperatures. J. Am. Ceram. Soc. 64, 426 (1981).

    Article  CAS  Google Scholar 

  40. J.W. Marx, J.M. Sivertsen: Temperature dependence of the elastic moduli and internal friction of silica and glass. J. Appl. Phys. 24, 81 (1953).

    Article  CAS  Google Scholar 

  41. S. Spinner, G.W. Cleek: Temperature dependence of Young’s modulus of vitreous germania and silica. J. Appl. Phys. 31, 1407 (1960).

    Article  CAS  Google Scholar 

  42. J.A. Bucaro, H.D. Dardy: High-temperature Brillouin scattering in fused quartz. J. Appl. Phys. 45, 5324 (1974).

    Article  CAS  Google Scholar 

  43. F. Szuecs, M. Werner, R.S. Sussmann, C.S.J. Pickles, H.J. Fecht: Temperature dependence of Young’s modulus and degradation of chemical vapor deposited diamond. J. Appl. Phys. 86, 6010 (1999).

    Article  CAS  Google Scholar 

  44. H.O. Pierson: Handbook of Carbon, Graphite, Diamond, and Fullerenes (Noyes Publications, Park Ridge, NJ, 1993).

    Google Scholar 

  45. M. Fujiwara, M. Otsuka: Indentation creep of beta–Sn and Sn–Pb eutectic alloy. Mater. Sci. Eng. 319, 929 (2001).

    Article  Google Scholar 

  46. H. Takagi, M. Dao, M. Fujiwara, M. Otsuka: Experimental and computational creep characterization of Al–Mg solid-solution alloy through instrumented indentation. Philos. Mag. 83, 3959 (2003).

    Article  CAS  Google Scholar 

  47. M. Watanabe, C. Mercer, C.G. Levi, A.G. Evans: A probe for the high temperature deformation of thermal barrier oxides. Acta Mater. 52, 1479 (2004).

    Article  CAS  Google Scholar 

  48. H. Takagi, M. Fujiwara, K. Kakehi: Measuring Young’s modulus of Ni-based superalloy single crystals at elevated temperatures through microindentation. Mater. Sci. Eng. A387–89, 348 (2004).

    Article  CAS  Google Scholar 

  49. T. Suzuki, T. Ohmura: Ultra-microindentation of silicon at elevated temperatures. Philos. Mag. A74, 1073 (1996).

    Article  Google Scholar 

  50. S.A. Syed-Asif, J.B. Pethica: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A76, 1105 (1997).

    Article  Google Scholar 

  51. B. Wolf, K.O. Bambauer, P. Paufler: On the temperature dependence of the hardness of quasicrystals. Mater. Sci. Eng. 298, 284 (2001).

    Article  Google Scholar 

  52. O. Kraft, D. Saxa, M. Haag, A. Wanner: The effect of temperature and strain rate on the hardness of Al and Al-based foams as measured by nanoindentation. Z. Metallkde. 92, 1068 (2001).

    CAS  Google Scholar 

  53. J. Xia, C.X. Li, H. Dong: Hot-stage nano-characterizations of an iron aluminide. Mater. Sci. Eng. A354, 112 (2003).

    Article  CAS  Google Scholar 

  54. M. Hinz, A. Kleiner, S. Hild, O. Marti, U. Durig, B. Gotsmann, U. Drechsler, T.R. Albrecht, P. Vettiger: Temperature dependent nano indentation of thin polymer films with the scanning force microscope. Eur. Polym. J. 40, 957 (2004).

    Article  CAS  Google Scholar 

  55. T.G. Nieh, C. Iwamoto, Y. Ikuhara, K.W. Lee, Y.W. Chung: Comparative studies of crystallization of a bulk Zr–Al–Ti–Cu–Ni amorphous alloy. Intermetallics 12, 1183 (2004).

    Article  CAS  Google Scholar 

  56. X.G. Ma, K. Komvopoulos: In situ transmission electron microscopy and nanoindentation studies of phase transformation and pseudoelasticity of shape-memory titanium-nickel films. J. Mater. Res. 20, 1808 (2005).

    Article  CAS  Google Scholar 

  57. Y.J. Zhang, Y.T. Cheng, D.S. Grummon: Indentation stress dependence of the temperature range of microscopic superelastic behavior of nickel-titanium thin films. J. Appl. Phys. 033505, 98 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Schuh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuh, C.A., Packard, C.E. & Lund, A.C. Nanoindentation and contact-mode imaging at high temperatures. Journal of Materials Research 21, 725–736 (2006). https://doi.org/10.1557/jmr.2006.0080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0080

Navigation