Skip to main content
Log in

Novel technique for measuring the mechanical properties of porous materials by nanoindentation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new technique for measuring the elastic-plastic properties of porous thin films by means of nanoindentation is proposed. The effects of porosity on indentation hardness and modulus are investigated through finite element analyses based on the Gurson model for plastic deformation of ductile porous materials. Intrinsic mechanical properties of the thin film are obtained by eliminating both substrate and densification effects. The technique is applied to the special case of a porous, low-permittivity dielectric thin film. The results are in good agreement with those obtained independently using the plane-strain bulge test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.B. Huang, F. Spaepen: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).

    Article  CAS  Google Scholar 

  2. Y. Xiang, X. Chen, J.J. Vlassak: The plane-strain bulge test for thin films. J. Mater. Res. 20, 2360 (2005).

    Article  CAS  Google Scholar 

  3. J.J. Vlassak, W.D. Nix: A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7, 3242 (1992).

    Article  CAS  Google Scholar 

  4. S.P. Baker, W.D. Nix: Mechanical properties of compositionally modulated Au-Ni thin films: Nanoindentation and microcantilever deflection experiments. J. Mater. Res. 9, 3131 (1994).

    Article  CAS  Google Scholar 

  5. T.P. Weihs, S. Hong, J.C. Bravman, W.D. Nix: Mechanical deflection of cantilever microbeams—A new technique for testing the mechanical-properties of thin films. J. Mater. Res. 13, 931 (1998).

    Google Scholar 

  6. S.P. Baker, A. Kretschmann, E. Arzt: Thermomechanical behavior of different texture components in Cu thin films. Acta Mater. 49, 2145 (2001).

    Article  CAS  Google Scholar 

  7. R.M. Keller, S.P. Baker, E. Arzt: Stress-temperature behaviour of unpassivated thin copper films. Acta Mater. 47, 415 (1999).

    Article  CAS  Google Scholar 

  8. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  9. M.F. Doerner, W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  10. G.M. Pharr: Measurement of mechanical properties by ultra-low-load indentation. Mater. Sci. Eng. A 253, 151 (1998).

    Article  Google Scholar 

  11. G.M. Pharr, A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).

    Article  CAS  Google Scholar 

  12. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).

    Book  Google Scholar 

  13. J.C. Hay, A. Bolshakov, G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

  14. X. Chen, J.J. Vlassak: Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16, 2974 (2001).

    Article  CAS  Google Scholar 

  15. J.J. Vlassak, W.D. Nix: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223 (1994).

    Article  Google Scholar 

  16. D. Tabor: The Hardness of Metals (Clarendon Press, Oxford, UK, 1951).

    Google Scholar 

  17. R. Saha, W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  18. N.A. Fleck, H. Otoyo, A. Needleman: Indentation on porous solids. Int. J. Solids Struct. 29, 1613 (1992).

    Article  Google Scholar 

  19. A.A. Volinsky, J.B. Vella, W.W. Gerberich: Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 429, 201 (2003).

    Article  CAS  Google Scholar 

  20. X. Chen, R. Wang, N. Yao, A.G. Evans, J.W. Hutchinson, R.W. Bruce: Foreign object damage in a thermal barrier system: Mechanisms and simulations. Mater. Sci. Eng. A 352, 221 (2003).

    Article  Google Scholar 

  21. X. Chen, M.Y. He, I. Spitsberg, N.A. Fleck, J.W. Hutchinson, A.G. Evans: Mechanisms governing the high temperature erosion of thermal-barrier coatings used in gas turbines. Wear 256, 735 (2004).

    Article  CAS  Google Scholar 

  22. X. Chen, J.W. Hutchinson, A.G. Evans: Simulation of the high temperature impression of thermal-barrier coatings with columnar microstructure. Acta Mater. 52, 565 (2004).

    Article  CAS  Google Scholar 

  23. A.L. Gurson: Continuum theory of ductile rupture by void nucleation and growth. I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2 (1977).

    Article  Google Scholar 

  24. Y. Xiang, X. Chen, T.Y. Tsui, J.I. Jang and J.J. Vlassak: Mechanical properties of porous and fully dense low-κ dielectric thin films measured by means of nanoindentation and the plane-strain bulge test technique. J. Mater. Res. 21, 386 (2006).

    Article  CAS  Google Scholar 

  25. H. Bückle Use of hardness test to determine other material properties, in The Science of Hardness Testing and Its Research Applications, edited by J.W. Westbrook and H. Conrad (American Society for Metals, Metals Park, OH, 1971), p. 453.

  26. ABAQUS 5.8 User’s Manual (ABAQUS Inc., Pawtucket, RI, 1998).

  27. S.D. Mesarovic, N.A. Fleck: Spherical indentation of elastic-plastic solids. Proc. R. Soc. London A455, 2707 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Xiang, Y. & Vlassak, J.J. Novel technique for measuring the mechanical properties of porous materials by nanoindentation. Journal of Materials Research 21, 715–724 (2006). https://doi.org/10.1557/jmr.2006.0088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0088

Navigation