Skip to main content
Log in

Mechanical properties of AZ31 Mg alloy recycled by severe deformation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

AZ31 Mg machined chips were recycled by extrusion at 673 K with a low extrusion ratio of 45:1 and a high extrusion ratio of 1600:1. Oxide contaminants were dispersed more uniformly in the recycled specimen with the high extrusion ratio than in that with the low extrusion ratio. In tensile tests, the recycled specimens with the high extrusion ratio showed about 50% higher 0.2% yield stress and about 20% higher tensile strength compared with those of the reference specimens, which were the extruded AZ31 Mg blocks under the same conditions as the recycled specimens. The improvement of the tensile properties was attributed not only to the small grain size, but also to the dispersed oxide contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ebert, B.L. Mordike: Magnesium properties—applications—potential. Mater. Sci. Eng. A302, 37 (2001).

    Google Scholar 

  2. J.F. King, A. Hopkins, S. Thistlethwaite Recycling of by-products from magnesium diecasting, in Proc. Third International Magnesium Conference, edited by G.W. Lorimer (The University Press Cambridge, Cambridge, England, 1997), p. 51.

  3. M. Mabuchi, K. Kubota, K. Higashi: New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bar. Mater. Trans. JIM 36, 1249 (1995).

    Article  CAS  Google Scholar 

  4. H. Watanabe, K. Moriwaki, T. Mukai, K. Ishikawa, M. Kohzu, K. Higashi: Consolidation of machined magnesium alloy chips by hot extrusion utilizing superplastic flow. J. Mater. Sci. 36, 5007 (2001).

    Article  CAS  Google Scholar 

  5. K. Kondoh, T. Luangvaranunt, T. Aizawa: Solid-state recycling of AZ91D magnesium alloy chips. J. Jpn. Inst. Light Metals 51, 516 (2001).

    Article  CAS  Google Scholar 

  6. Y. Chino, K. Kishihara, K. Shimojima, H. Hosokawa, Y. Yamada, C.E. Wen, H. Iwasaki, M. Mabuchi: Superplasticity and cavitation of recycled AZ31 magnesium alloy fabricated by solid recycling process. Mater. Trans. 43, 2437 (2002).

    Article  CAS  Google Scholar 

  7. Y. Chino, M. Kobata, K. Shimojima, H. Hosokawa, Y. Yamada, H. Iwasaki, M. Mabuchi: Blow forming of Mg alloy recycled by solid-state recycling. Mater. Trans. 45, 361 (2004).

    Article  CAS  Google Scholar 

  8. T. Aida, N. Takatsuji, K. Matsuki, S. Kamado, Y. Kojima: Homogeneous consolidation process by ECAP for AZ31 cutting chips. J. Jpn. Inst. Light Metals 54, 532 (2004).

    Article  CAS  Google Scholar 

  9. H. Alves, U. Koster, E. Aghion, D. Eliezer: Environmental behavior of magnesium and magnesium alloys. Mater. Technol. 16, 110 (2001).

    Article  CAS  Google Scholar 

  10. Y. Chino, H. Iwasaki, M. Mabuchi: Solid state recycling for machined chips of iron by hot extrusion and annealing. J. Mater. Res. 19, 1524 (2004).

    Article  CAS  Google Scholar 

  11. D.L. Yin, K.F. Zhang, G.F. Wang, W.B. Han: Warm deformation behavior of hot-rolled AZ31 Mg alloy. Mater. Sci. Eng. A392, 320 (2005).

    Article  CAS  Google Scholar 

  12. R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch: The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45 (1962).

    Article  CAS  Google Scholar 

  13. Z.C. Wang, P.B. Prangnell: Microstructure refinement and mechanical properties of severely deformed Al–Mg–Li alloys. Mater. Sci. Eng. A328, 87 (2002).

    Article  CAS  Google Scholar 

  14. F.J. Humphreys: A unified theory of recovery, recrystallization and grain growth based on the stability and growth of cellular microstructures—II. The effect of second-phase particles. Acta Mater. 45, 5031 (1997).

    Article  CAS  Google Scholar 

  15. M. Mabuchi, K. Higashi: Strengthening mechanisms of Mg–Si alloys. Acta Mater. 44, 4611 (1996).

    Article  CAS  Google Scholar 

  16. R.M. Aikin Jr. L. Christodoulou: The role of equiaxed particles on the yield stress of composites. Scripta Metall. 25, 9 (1991).

    Article  CAS  Google Scholar 

  17. J.W. Luster, M. Thumann, R. Baumann: Mechanical properties of aluminum alloy 6061–Al2O3 composites. Mater. Sci. Technol. 9, 853 (1993).

    Article  CAS  Google Scholar 

  18. M.R. Barnett: A Taylor model based on description of the proof stress of magnesium AZ31 during hot working. Metall. Mater. Trans. A 34, 1799 (2003).

    Article  Google Scholar 

  19. Magnesium and Magnesium Alloys, ASM Specialty Handbook, edited by M.M. Avedesian and H. Baker (ASM International, The Materials Information Society, Materials Park, OH, 1999), p. 258.

  20. H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps (Pergamon Press, Oxford, UK, 1982), p. 44.

    Google Scholar 

  21. Ceramics Dictionary, edited by The Ceramics Society of Japan (Maruzen, Tokyo, Japan, 1997), p. 556 (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasumasa Chino or Mamoru Mabuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chino, Y., Hoshika, T., Lee, JS. et al. Mechanical properties of AZ31 Mg alloy recycled by severe deformation. Journal of Materials Research 21, 754–760 (2006). https://doi.org/10.1557/jmr.2006.0090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0090

Navigation