Skip to main content
Log in

Extended solubility of CoO in ZnO and effects on magnetic properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The metastable solid solubility extension of CoO in ZnO (wurtzite) was investigated in precursor-derived powders as well as in thin films grown on sapphire substrates by pulsed laser deposition. A maximum solubility of 30% Co2+ in ZnO was achieved in the powders. Transmission electron microscopy (TEM) of the films revealed them to have grown epitaxially and retained up to nearly 40% CoO in solid solution, but some Co2+ precipitated as rock-salt. The temperature dependence of the metastable solubility limit in the ZnO-CoO system was assessed and is discussed in terms of the relevant thermodynamic factors. The magnetic properties of n-type conductive Zn0.79Co0.2Al0.01Ofilms were studied, yielding evidence of a ferromagnetic phase with a TC of 25 K and a second, magnetically ordered, phase with positive exchange and arguably a TC of ∼250 K. Connections between the properties and microstructural observations in high resolution TEM are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sato, H. Katayama-Yoshida: Electronic structure and ferromagnetism of transition-metal-impurity-doped zinc oxide. Physica B 308, 904 (2001).

    Article  Google Scholar 

  2. N. Spaldin: Search for ferromagnetism in transition-metal-doped piezoelectric ZnO. Phys. Rev. B 69, 125201-1 (2004).

    Article  Google Scholar 

  3. K. Sato, H. Katayama-Yoshida: Ab initio study on the magnetism in ZnO-, ZnS-, ZnSe-, and ZnTe-based diluted magnetic semiconductors. Phys. Status Solidi B 229, 673 (2002).

    Article  CAS  Google Scholar 

  4. A. Lee, K.J. Chang: Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO. Phys. Rev. B 69, 085205 (2004).

    Article  Google Scholar 

  5. R. Janisch, P. Gopal, N.A. Spaldin: Transition metal-doped TiO2 and ZnO-present status of the field. J. Phys.: Condens. Matter 17, R1 (2005).

    Google Scholar 

  6. C.H. Bates, W.B. White, R. Roy: The solubility of transition metal oxides in zinc oxide and the reflectance spectra of Mn2+ and Fe2+ in tetrahedral fields. J. Inorg. Nucl. Chem. 28, 397 (1966).

    Article  CAS  Google Scholar 

  7. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000).

    Article  CAS  Google Scholar 

  8. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005).

    Article  CAS  Google Scholar 

  9. V. Jayaram, J. Rajkumar, B.S. Rani: Synthesis of metastable, wurtzite-based zinc oxide-cobalt(II) oxide solid solutions by spray pyrolysis. J. Am. Ceram. Soc. 82, 473 (1999).

    Article  CAS  Google Scholar 

  10. K. Ueda, H. Tabata, T. Kawai: Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988 (2001).

    Article  CAS  Google Scholar 

  11. S. Yang, A. Pakhomov, S. Hung, C. Wong: Room temperature magnetism in sputtered (Zn,Co)O films. IEEE Trans. Magn. 38, 2877 (2002).

    Article  CAS  Google Scholar 

  12. S. Ramachandran, A. Tiwari, N. Narayan: Zn0.9Co0.1O-based diluted magnetic semiconducting thin films. Appl. Phys. Lett. 84, 5255 (2004).

    Article  CAS  Google Scholar 

  13. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, H. Koinuma: High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824 (2001).

    Article  CAS  Google Scholar 

  14. J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo: Magnetic properties of epitaxially grown semiconducting Zn1−xCox O thin films by pulsed laser ablation. J. Appl. Phys. 92, 6066 (2002).

    Article  CAS  Google Scholar 

  15. A.C. Tuan, J.D. Bryan, A.B. Pakhomov, V. Shutthanandan, S. Thevuthasan, D.E. McCready, D. Gaspar, M.H. Engelhard, J.W. Rogers Jr. K. Krishnan, D.R. Gamelin, S.A. Chambers: Epitaxial growth and properties of cobalt-doped ZnO on α–Al2O3 single-crystal substrates. Phys. Rev. B 70, 054424 (2004).

    Article  Google Scholar 

  16. D.A. Schwartz, D.R. Gamelin: Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. Adv. Mater. 16, 2115 (2004).

    Article  CAS  Google Scholar 

  17. C.G. Levi: Metastability and microstructure evolution in the synthesis of inorganics from precursors. Acta Mater. 46, 787 (1998).

    Article  CAS  Google Scholar 

  18. V. Srikant, W. Sergo, D.R. Clarke: Epitaxial aluminum-doped zinc oxide thin films on sapphire: I. Effect of substrate orientation. J. Am. Ceram. Soc. 78, 1931 (1995).

    Article  CAS  Google Scholar 

  19. A. Ramesh, A. Inam, W.K. Chan, B. Wilkens, K. Myers, K. Remschnig, D.L. Hart, J.M. Tarascon: Epitaxial cuprate superconductor/ferroelectric heterostructures. Science 252, 944 (1991).

    Article  CAS  Google Scholar 

  20. V. Srikant, V. Sergo, D.R. Clarke: Epitaxial aluminum-doped zinc oxide thin films on sapphire: II. Defect equilibria and electrical properties. J. Am. Ceram. Soc. 78, 1935 (1995).

    Article  CAS  Google Scholar 

  21. Z. Zhang: Max Planck Institut für Metallforschung (unpublished).

  22. J. Bentley, S. McKernan, C.B. Carter, A. Revcolevschi Microanalysis of an oxidized cobalt oxide-zirconia eutectic, in Electron Microscopy and Analysis 1993, edited by A.J. Craven (Institute of Physics Publishing, Bristol, UK, 1993), p. 39.

    Google Scholar 

  23. C. Mitterbauer, G. Kothleitner, W. Grogger, H. Zandbergen, B. Freitag, P. Tiemeijer, F. Hofer: Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution. Ultramicroscopy 96, 469 (2003).

    Article  CAS  Google Scholar 

  24. B.D. Cullity: Introduction to Magnetic Materials, 1st ed. (Addison-Wesley Publishing Company, Reading, MA, 1972), pp. 93, 98.

    Google Scholar 

  25. A. Navrotsky, A. Muan: Activity composition relations in the systems CoO–ZnO and NiO–ZnO at 1050 °C. J. Inorg. Nucl. Chem. 33, 35 (1971).

    Article  CAS  Google Scholar 

  26. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751 (1976).

    Article  CAS  Google Scholar 

  27. R.W. Grimes, K.P.D. Lagerlöf: Polymorphs of cobalt oxide. J. Am. Ceram. Soc. 74, 270 (1991).

    Article  CAS  Google Scholar 

  28. A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, R. Seshadri: Magnetism in polycrystalline cobalt-substituted zinc oxide. Phys. Rev. B 68, 205202 (2003).

    Article  Google Scholar 

  29. I. Jung, S.A. Decterov, A.D. Pelton, H. Kim, Y. Kang: Thermodynamic evaluation and modeling of the Fe–Co–O system. Acta Mater. 52, 507 (2004).

    Article  CAS  Google Scholar 

  30. M. Cheng, B. Hallstedt, L.J. Gauckler: Thermodynamic assessment of the Co–O system. J. Phase Equilib. 24, 212 (2003).

    Article  Google Scholar 

  31. D.R. Lide: CRC Handbook of Chemistry and Physics, 82nd ed. (CRC Press, Boca Raton, FL, 2001).

    Google Scholar 

  32. L.A. Zabdyr, O. Fabrichnaya: Phase equilibria in the cobalt oxide-copper oxide system. J. Phase Equilib. 23, 149 (2002).

    Article  CAS  Google Scholar 

  33. A. Navrotsky: Lattice stability of AX and AB2O4 compounds. Calphad 4, 255 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias A. Schaedler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaedler, T.A., Gandhi, A.S., Saito, M. et al. Extended solubility of CoO in ZnO and effects on magnetic properties. Journal of Materials Research 21, 791–801 (2006). https://doi.org/10.1557/jmr.2006.0092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0092

Navigation