Skip to main content
Log in

Polarization reorientation in ferroelectric lead zirconate titanate thin films with electron beams

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ferroelectric domain patterning with an electron beam is demonstrated. Polarization of lead zirconate titanate thin films is shown to be reoriented in both positive and negative directions using piezoresponse force and scanning surface potential microscopy. Reorientation of the ferroelectric domains is a response to the electric field generated by an imbalance of electron emission and trapping at the surface. A threshold of 500 μC/cm2 and a saturation of 1500 μC/cm2 were identified. Regardless of beam energy, the polarization is reoriented negatively for beam currents less than 50 pA and positively for beam currents greater than 1 nA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Scott, De C.A.P. Araujo: Ferroelectric memories. Science 246, 1400 (1989).

    Article  CAS  Google Scholar 

  2. K. UchinoFerroelectric Devices (Marcel Dekker, New York, 2000).

    Google Scholar 

  3. S.V. Kalinin, D.A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J.H. Ferris: Atomic polarization and local reactivity on ferroelectric surfaces: A new route toward complex nanostructures. Nano Lett. 2, 589 (2002).

    Article  CAS  Google Scholar 

  4. S.V. Kalinin, D.A. Bonnell, T. Alvarez, X. Lei, Z. Hu, R. Shao, J.H. Derris: Ferroelectric lithography of multicomponent nanostructures. Adv. Mater. 16, 795 (2004).

    Article  CAS  Google Scholar 

  5. M. Yamada, N. Nada, M. Saitoh, K. Watanabe: First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62, 435 (1993).

    Article  CAS  Google Scholar 

  6. C.H. Ahn, T. Tybell, L. Antognazza, K. Char, R.H. Hammond, M.R. Beasley, O. Fischer, J.M. Triscone: Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures. Science 276, 1100 (1997).

    Article  CAS  Google Scholar 

  7. T. Tybell, C.H. Ahn, J.M. Triscone: Control and imaging of ferroelectric domains over large areas with nanometer resolution in atomically smooth epitaxial Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 72, 1454 (1998).

    Article  CAS  Google Scholar 

  8. J.H. Ferris, D.B. Li, S.V. Kalinin, D.A. Bonnell: Nanoscale domain patterning of zirconate titanate materials using electon beams. Appl. Phys. Lett. 84, 774 (2004).

    Article  CAS  Google Scholar 

  9. M. Yamada, K. Kishima: Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron-beam lithography at room temperature. Electron. Lett. 27, 828 (1991).

    Article  CAS  Google Scholar 

  10. J. He, S.H. Tang, Y.Q. Qin, P. Dong, H.Z. Zhang, C.H. Kang, W.X. Sun, Z.X. Shen: Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron-beam lithography. J. Appl. Phys. 93, 9943 (2003).

    Article  CAS  Google Scholar 

  11. D.C. Joy: Database on electron-solid interactions (private communication, 2001).

    Google Scholar 

  12. Y. Xu: Ferroelectric Materials and Their Applications (North-Holland, New York, 1991), p. 110.

    Google Scholar 

  13. MCNC, Raleigh, NC, composition specified by the vendor.

  14. S.V. Kalinin, D.A. Bonnell: Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408 (2002).

    Article  Google Scholar 

  15. S. Fakhfakh, O. Jbara, M. Belhaj, Z. Fakhfakh, A. Kallel, E.I. Rau: Dynamic investigation of electron trapping and charge decay in electron-irradiated Al2O3 in a scanning electron microscope: Methodology and mechanisms. Nucl. Instrum. Meth. B, 197,114 (2002).

    Article  CAS  Google Scholar 

  16. R. Renoud, F. Mady, J.P. Ganachaud: Monte Carlo simulation of the charge distribution induced by a high-energy electron beam in an insulating target. Phys. Condens. Matter 14, 231 (2002).

    Article  CAS  Google Scholar 

  17. J. Cazaux: Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 59, 1418 (1986).

    Article  Google Scholar 

  18. T. Thome, D. Braga, G. Blaise: Effect of current density on electron beam induced charging in sapphire and yttria-stabilized zirconia. J. Appl. Phys. 95, 2619 (2004).

    Article  CAS  Google Scholar 

  19. R. Coelho, B. Aladeniz, B. Garros, D. Acroute, P. Mirebeau: Toward a quantitative analysis of the mirror method for characterizing insulation. IEEE Tran. Dielectr. Electr. Insul. 6, 202 (1999).

    Article  Google Scholar 

  20. K. Kanaya, S. Okayama: Penetration and energy-loss theory of electrons in solid targets. J. Phys. D 5, 43 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bonnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D.B., Strachan, D.R., Ferris, J.H. et al. Polarization reorientation in ferroelectric lead zirconate titanate thin films with electron beams. Journal of Materials Research 21, 935–940 (2006). https://doi.org/10.1557/jmr.2006.0107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0107

Navigation