Skip to main content
Log in

Thiolation of carbon nanotubes and sidewall functionalization

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have used transmission electron microscopy to observe the structural changes that have occurred in multi-walled carbon nanotubes (MWCNTs) because of acid treatment. After a thiolation reaction of the acid-treated MWCNTs using P4S10 in refluxing toluene, we have also used electron energy loss spectroscopy to characterize the changes on the nanotubes from sidewall functionalization. We have determined that the sulfur content bonded to the nanotubes is 0.6% in terms of the atomic content of the samples. Raman spectroscopy was used to examine the vibrational changes that occurred to the nanotubes as well as identifying new vibrational modes around 500 cm−1 characteristic of carbon-sulfur bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).

    CAS  Google Scholar 

  3. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker: Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997).

    CAS  Google Scholar 

  4. M.S. Dresselhaus, G. Dresselhaus, J.C. Charlier, HernáE. ndez: Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. R. Soc. London, Ser. A 362, 2065 (2004).

    CAS  Google Scholar 

  5. R.H. Baughman, A.A. Zakhidov, W.A. de Heer: Carbon nanotubes: The route toward applications. Science 297, 787 (2002).

    CAS  Google Scholar 

  6. W.A. de Heer, A. Chatelain, D. Ugaarte: A carbon nanotube field-emission electron source. Science 270, 1179 (1995).

    Google Scholar 

  7. M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, BäckströJ. m, E.E.B. Campbell, F. Rohmund: Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films. Appl. Phys. A 73, 409 (2001).

    CAS  Google Scholar 

  8. R. Blake, Y.K. Gun’ko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, W.J. Blau: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J. Am. Chem. Soc. 126, 10226 (2004).

    CAS  Google Scholar 

  9. S.G. Rao, L. Huang, W. Setyawan, S. Hong: Nanotube electronics: Large-scale assembly of carbon nanotubes. Nature 425, 36 (2003).

    CAS  Google Scholar 

  10. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer: Carbon nanotube quantum resistors. Science 280, 1744 (1998).

    CAS  Google Scholar 

  11. G. Chen, S. Bandow, E.R. Margine, C. Nisoli, A.N. Kolmogorov, V.H. Crespi, R. Gupta, G.U. Sumanasekera, S. Iijima, P.C. Eklund: Chemically doped double-walled carbon nanotubes: Cylindrical molecular capacitors. Phys. Rev. Lett. 90, 257403 (2003).

    Google Scholar 

  12. W. Zhu, N. Minami, S. Kazaoui, Y. Kim: Fluorescent chromophore functionalized single-wall carbon nanotubes with minimal alteration to their characteristic one-dimensional electronic states. J. Mater. Chem. 13, 2196 (2003).

    CAS  Google Scholar 

  13. H. Murakami, T. Nomura, N. Nakashima: Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem. Phys. Lett. 378, 481 (2003).

    CAS  Google Scholar 

  14. T.G. Hedderman, S.M. Keogh, G. Chambers, H.J. Byrne: Solubilization of SWNTs with organic dye molecules. J. Phys. Chem. B 108, 18860 (2004).

    CAS  Google Scholar 

  15. B.R. Azamian, K.S. Coleman, J.J. Davis, N. Hanson, M.L.H. Green: Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun. 4, 366 (2002).

    Google Scholar 

  16. S. Banerjee, S. Stanislaus Wong: In situ quantum dot growth on multiwalled carbon nanotubes. J. Am. Chem. Soc. 125, 10342 (2003).

    CAS  Google Scholar 

  17. T.M. Day, P.R. Unwin, N.R. Wilson, J.V. Macpherson: Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. J. Am. Chem. Soc. 127, 10639 (2005).

    CAS  Google Scholar 

  18. B.J. Landi, S.L. Castro, H.J. Ruf, C.M. Evans, S.G. Bailey, R.P. Raffaelle: CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol. Energy Mater. Sol. Cells 87, 733 (2005).

    CAS  Google Scholar 

  19. S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, R.C. Haddon: Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105 (2002).

    CAS  Google Scholar 

  20. K. McGuire, N. Gothard, P.L. Gai, M.S. Dresselhaus, G. Sumanasekera, A.M. Rao: Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43, 219 (2005).

    CAS  Google Scholar 

  21. J. Maultzsch, S. Reich, C. Thomsen, S. Webster, R. Czerw, D.L. Carroll, S.M.C. Vieira, P.R. Birkett, C.A. Rego: Raman characterization of boron-doped multiwalled carbon nanotubes. Appl. Phys. Lett. 81, 2647 (2002).

    CAS  Google Scholar 

  22. J. Xu, M. Xiao, R. Czerw, D.L. Carroll: Optical limiting and enhanced optical nonlinearity in boron-doped carbon nanotubes. Chem. Phys. Lett. 389, 247 (2004).

    CAS  Google Scholar 

  23. V. Likodimos, S. Glenis, C.L. Lin: Electronic properties of boron-doped multiwall carbon nanotubes studied by ESR and static magnetization. Phys. Rev. B 72, 045436 (2005).

    Google Scholar 

  24. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N. Kam Wong Shi, M. Shim, Y. Li, W. Kim, P.J. Utz, H. Dai: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100, 4984 (2003).

    CAS  Google Scholar 

  25. S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, C.M. Lieber: Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology. Nature 394, 52 (1998).

    CAS  Google Scholar 

  26. M.A. Hamon, J. Chen, H. Hu, Y. Chen, M.E. Itkis, A.M. Rao, P.C. Eklund, R.C. Haddon: Dissolution of single-walled carbon nanotubes. Adv. Mater. 11, 834 (1999).

    CAS  Google Scholar 

  27. T. Lin, V. Bajpai, T. Ji, L. Dai: Chemistry of carbon nanotubes. Aust. J. Chem. 56, 635 (2003).

    CAS  Google Scholar 

  28. K.M. Lee, L. Li, L. Dai: Asymmetric end-functionalization of multi-walled carbon nanotubes. J. Am. Chem. Soc. 127, 4122 (2005).

    CAS  Google Scholar 

  29. N. Chopra, M. Majumder, B.J. Hinds: Bifunctional carbon nanotubes by sidewall protection. Adv. Funct. Mater. 15, 858 (2005).

    CAS  Google Scholar 

  30. H. Peng, L.B. Alemany, J.L. Margrave, V.N. Khabashesku: Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 125, 15174 (2003).

    CAS  Google Scholar 

  31. M.S. Strano, C.A. Dyke, M.L. Usrey, P.W. Barone, M.J. Allen, H. Shan, C. Kittrell, R.H. Hauge, J.M. Tour, R.E. Smalley: Electronic structure control of single-wall carbon nanotube functionalization. Science 301, 1519 (2003).

    CAS  Google Scholar 

  32. M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, F. Jellen: Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. Engl. 40, 4002 (2001).

    CAS  Google Scholar 

  33. S.A. Curran, A.V. Ellis, A. Vijayaraghavan, P.M. Ajayan: Functionalization of carbon nanotubes using phenosafranin. J. Chem. Phys. 120, 4886 (2004).

    CAS  Google Scholar 

  34. J.N. Coleman, A.B. Dalton, S. Curran, A. Rubio, A.P. Davey, A. Drury, B. McCarthy, B. Lahr, P.M. Ajayan, S. Roth, R.C. Barklie, W. Blau: Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv. Mater. 12, 3 (2000).

    Google Scholar 

  35. Y. Lin, A.M. Rao, B. Sadanadan, E.A. Kenik, Y.P. Sun: Functionalizing multiple-walled carbon nanotubes with aminopolymers. J. Phys. Chem. B 106, 1294 (2002).

    CAS  Google Scholar 

  36. H. Kong, C. Gao, D. Yan: Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 126, 412 (2004).

    CAS  Google Scholar 

  37. K.A. Fernando Shiral, Y. Lin, W. Wang, S. Kumar, B. Zhou, S. Xie, L.T. Cureton, Y. Sun: Diminished band-gap transitions of single-walled carbon nanotubes in complexation with aromatic molecules. J. Am. Chem. Soc. 126, 10234 (2004).

    CAS  Google Scholar 

  38. J. Zhang, J.K. Lee, Y. Wu, R.W. Murray: Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett. 3, 403 (2003).

    CAS  Google Scholar 

  39. S.A. Curran, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A.B. Dalton, A.P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics. Adv. Mater. 10, 1091 (1998).

    CAS  Google Scholar 

  40. V. Georgakilas, K. Kordatos, M. Prato, D.M. Guldi, M. Holzinger, A. Hirsch: Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760 (2002).

    CAS  Google Scholar 

  41. T. Nakajima, S. Kasamatsu, Y. Matsuo: Synthesis and characterization of fluorinated carbon nanotube. Eur. J. Solid State Inorg. Chem. 33, 831 (1996).

    CAS  Google Scholar 

  42. S. Kawasaki, K. Komatsu, F. Okino, H. Touhara, H. Kataura: Fluorination of open- and closed-end single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 6, 1769 (2004).

    CAS  Google Scholar 

  43. H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend: Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 103, 8116 (1999).

    CAS  Google Scholar 

  44. J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon: Solution properties of single-walled carbon nanotubes. Science 282, 95 (1998).

    CAS  Google Scholar 

  45. Y. Lin, B. Zhou, K.A.S. Fernado, P. Liu, L.F. Allard, Y.P. Sun: Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules 36, 7199 (2003).

    CAS  Google Scholar 

  46. S. Qin, D. Qin, W.T. Ford, D.E. Resasco, J.E. Herrera: Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 37, 752 (2004).

    CAS  Google Scholar 

  47. G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C.Y. Ryu, P.M. Ajayan: Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258 (2003).

    CAS  Google Scholar 

  48. X. Lou, C. Detrembleur, V. Sciannamea, C. Pagnoulle, JérôR. me: Grafting of alkoxyamine end-capped (co)polymers onto multi-walled carbon nanotubes. Polymer 45, 6087 (2004).

    Google Scholar 

  49. S. Chaudhary, J.H. Kim, K.V. Singh, M. Ozkan: Fluorescence microscopy visualization of single-walled carbon nanotubes using semiconductor nanocrystals. Nano Lett. 4, 2415 (2004).

    CAS  Google Scholar 

  50. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Filho Souza, R. Saito: Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40, 2043 (2002).

    CAS  Google Scholar 

  51. J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D.N. Weldon, M. Delamesiere, S. Draper, H. Zandbergen: Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem. Phys. Lett. 221, 53 (1994).

    CAS  Google Scholar 

  52. A. Jorio, A.G. Filho Souza, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito: G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 65, 155412 (2002).

    Google Scholar 

  53. P. Tan, L. An, L. Liu, Z. Guo, R. Czerw, D.L. Carroll, P.M. Ajayan, N. Zhang, H. Guo: Probing the phonon dispersion relations of graphite from the double resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes. Phys. Rev. B 66, 245410 (2002).

    Google Scholar 

  54. F. Tuinstra, J.L. Koenig: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).

    CAS  Google Scholar 

  55. R. Saito, A. Grüneis, G.G. Samsonidze, V.W. Brar, G. Dresselhaus, M.S. Dresselhaus, A. Jorio, L.G. Cançado, C. Fantini, M.A. Pimenta, A.G. Filho Souza: Double resonance Raman spectroscopy of single-wall carbon nanotubes. N. J. Phys. 5, 1571 (2003).

    Google Scholar 

  56. B.C. Satishkumar, A. Govindaraj, J. Mofokeng, G.N. Subbanna, C.N.R. Rao: Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J. Phys. B: At. Mol. Opt. Phys. 29, 4925 (1996).

    CAS  Google Scholar 

  57. N. Zhang, J. Xie, V.K. Varadan: Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst. Smart Mater. Struct. 11, 962 (2002).

    CAS  Google Scholar 

  58. A.V. Ellis, K. Vijayamohanan, R. Goswami, N. Chakrapani, L.S. Ramanathan, P.M. Ajayan, G. Ramanath: Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes. Nano Lett. 3, 279 (2003).

    CAS  Google Scholar 

  59. J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, Rodriguez–F. Macias, Y. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley: Fullerene pipes. Science 280, 1253 (1998).

    CAS  Google Scholar 

  60. A. Sudalai, S. Kanagasabapathy, B.S. Benicewicz: Phosphorus pentasulfide: A mild and versatile catalyst/reagent for the preparation of dithiocarboxylic esters. Org. Lett. 2, 3213 (2000).

    CAS  Google Scholar 

  61. T. Livneh, T.L. Haslett, M. Moskovits: Distinguishing disorder-induced bands from allowed Raman bands in graphite. Phys. Rev. B 66, 195110 (2002).

    Google Scholar 

  62. G. Liu, Q. Fang, W. Xu, H. Chen, C. Wang: Vibration assignment of carbon-sulfur bond in 2-thione-1,3-dithiole-4,5-dithiolate derivatives. Spectrochem. Acta A Mol. Biomol. Spectrosc. 60, 541 (2004).

    Google Scholar 

  63. J. Dong, L. Luo, P.H. Liang, D. Dunaway–Mariano, P.R. Carey: Raman difference spectroscopic studies of dithiobenzoyl substrate and product analogs binding to the enzyme dehalogenase: p-electron polarization is prevented by the C=O to C=S substitution. J. Raman Spectrosc. 31, 365 (2000).

    CAS  Google Scholar 

  64. N. Chakrapani, S. Curran, B. Wei, P.M. Ajayan, A. Carrillo, R.S. Kane: Spectral fingerprinting of structural defects in plasma–treated carbon nanotubes. J. Mater. Res. 18, 2515 (2003).

    CAS  Google Scholar 

  65. A.C. Ferrari, J. Robertson: Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon. Phys. Rev. B 64, 075414 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seamus A. Curran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curran, S.A., Cech, J., Zhang, D. et al. Thiolation of carbon nanotubes and sidewall functionalization. Journal of Materials Research 21, 1012–1018 (2006). https://doi.org/10.1557/jmr.2006.0125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0125

Navigation