Skip to main content
Log in

Contact creep compliance of viscoelastic materials via nanoindentation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The creep compliance of viscoelastic materials such as synthetic polymers is an established metric of the rate at which strain increases for a constant applied stress and can, in principle, be implemented at the nanoscale to compare quantitatively bulk or thin film polymers of different structures or processing histories. Here, we outline the evolution of contact creep compliance analysis and application for both conical and spherical indenter geometries. Through systematic experiments on four amorphous (glassy) polymers, two semi-crystalline polymers and two epoxies, we show that assumptions of linear viscoelasticity are not maintained for any of these polymers when creep compliance is measured via conical indentation at the nanoscale, regardless of the rate of stress application (step or ramp). Further, we show that these assumptions can be maintained to evaluate the contact creep compliance Jc(t) of these bulk polymers, regardless of the rate of stress application, provided that the contact strains are reduced sufficiently through spherical indentation. Finally, we consider the structural and physical properties of these polymers in relation to Jc(t), and demonstrate that Jc(t) correlates positively with molecular weight between entanglements or crosslinks of bulk, glassy polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. S.A.S. Asif, K.J. Wahl, R.J. Colton, O.L. Warren: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 1192 (2001).

    Article  Google Scholar 

  3. J.L. Loubet, W.C. Oliver, B.N. Lucas: Measurement of the loss tangent of low-density polyethylene with a nanoindentation technique. J. Mater. Res. 15, 1195 (2000).

    Article  CAS  Google Scholar 

  4. A.H.W. Ngan, B. Tang: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).

    Article  CAS  Google Scholar 

  5. H. Lu, B. Wang, J. Ma, G. Huang, H. Viswanathan: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189 (2003).

    Article  Google Scholar 

  6. A.C. Fischer-Cripps: A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng. A 385, 74 (2004).

    Article  Google Scholar 

  7. M.R. Van Landingham, P.L. Drzal, and C.C. White: Indentation creep and relaxation measurements of polymers, in Fundamentals of Nanoindentation and Nanotribology III edited by K.J. Wahl, N. Huber, A.B. Mann, D.F. Bahr, and Y.T. Cheng (Mater. Res. Soc. Symp. Proc. 841, Warrendale, PA, 2005), R5.5.

  8. H. Lu, G. Huang, B. Wang, A. Mamedov, and S. Gupta: Measurements of viscoelastic properties of SWNT/polymer composite films using nanoindentation, in Fundamentals of Nanoindentation and Nanotribology III edited by K.J. Wahl, N. Huber, A.B. Mann, D.F. Bahr, and Y.T. Cheng (Mater. Res. Soc. Symp. Proc. 841, Warrendale, PA, 2005), R4.5.

  9. S. Yang, Y.W. Zhang, K.Y. Zeng: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655 (2004).

    Article  CAS  Google Scholar 

  10. M.L. Oyen: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094 (2005).

    Article  CAS  Google Scholar 

  11. C.A. Tweedie and K.J. Van Vliet: Nanomechanical quantification of energy absorption, in Fundamentals of Nanoindentation and Nanotribology III edited by K.J. Wahl, N. Huber, A.B. Mann, D.F. Bahr, and Y.T. Cheng (Mater. Res. Soc. Symp. Proc. 841, Warrendale, PA, 2005), R5.6.

  12. T.C.T. Ting: The contact stresses between a rigid indentor and a viscoelastic half-space. J. Appl. Mech. 88, 845 (1966).

    Article  Google Scholar 

  13. E.H. Lee, J.R.M. Radok: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).

    Article  Google Scholar 

  14. L. Cheng, X. Xia, L.E. Scriven, W.W. Gerberich: Spherical-tip indentation of viscoelastic material. Mech. Mater. 37, 213 (2005).

    Article  Google Scholar 

  15. M.R. VanLandingham, N.K. Chang, P.L. Drzal, C.C. White, S.H. Chang: Viscoelastic characterization of polymers using instrumented indentation—I. Quasi-static testing. J. Polym. Sci. B: Polym. Phys. 43, 1794 (2005).

    Article  CAS  Google Scholar 

  16. Y.T. Cheng and C.M. Cheng: Modeling indentation in linear viscoelastic solids, in Fundamentals of Nanoindentation and Nanotribology III edited by K.J. Wahl, N. Huber, A.B. Mann, D.F. Bahr, and Y.T. Cheng (Mater. Res. Soc. Symp. Proc. 841, Warrendale, PA, 2005), R11.2.

  17. B.J. Briscoe, L. Fiori, E. Pelillo: Nano-indentation of polymeric surfaces. J. Phys. D 31, 2395 (1998).

    Article  CAS  Google Scholar 

  18. M. Vandamme, F. Ulm Viscoelastic solutions for conical indentation. (2005, unpublished).

    Google Scholar 

  19. I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  20. A.J. Lesser, K.J. Calzia: Molecular parameters governing the yield response of epoxy-based glassy networks. J. Polym. Sci. B: Polym. Phys. 42, 2050 (2004).

    Article  CAS  Google Scholar 

  21. L.S. Loo, R.E. Cohen, K.K. Gleason: Chain mobility in the amorphous region of nylon 6 observed under active uniaxial deformation. Science 288, 116 (2000).

    Article  CAS  Google Scholar 

  22. S. Shimizu, T. Yanagimoto, M. Sakai: The pyramidal indentation load-depth curve of viscoelastic materials. J. Mater. Res. 14, 4075 (1999).

    Article  CAS  Google Scholar 

  23. M. Sakai: Indentation rheometry for glass-forming materials: J. Non-Cryst. Solids 282, 236 (2001).

    CAS  Google Scholar 

  24. Y.T. Cheng, C.M. Cheng: Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J. Mater. Res. 20, 1046 (2005).

    Article  CAS  Google Scholar 

  25. C.A. Tweedie, K.J. Van Vliet On the volumetric recovery and fleeting hardness of time-dependent materials (polymers). (2006, unpublished).

    Google Scholar 

  26. D. Tabor: The Hardness of Metals (Clarendon, London, UK, 1951).

    Google Scholar 

  27. J.D. Ferry: Viscoelastic Properties of Polymers 3rd ed. (John Wiley & Sons, New York, 1980).

    Google Scholar 

  28. R.F. Brady: Comprehensive Desk Reference of Polymer Characterization and Analysis (Oxford University Press, Washington, DC, 2003).

    Google Scholar 

  29. R.J. Young, P.A. Lovell: Introduction to Polymers 2nd ed. (Chapman & Hall, New York, 1991).

    Book  Google Scholar 

  30. F. Dinelli, G.J. Leggett, P.H. Shipway: Nanowear of polystyrene surfaces: Molecular entanglement and bundle formation. Nanotech. 16, 675 (2005).

    Article  CAS  Google Scholar 

  31. R.D. Priestly, C.J. Ellison, L.J. Broadbelt, J.M. Torkelson: Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456 (2005).

    Article  Google Scholar 

  32. E.H. Lee: Stress analysis in visco-elastic bodies. Quart. Appl. Math. 13, 183 (1955).

    Article  Google Scholar 

  33. H.R. Hertz: On the Contact of Two Elastic Solids (MacMillan, 1882).

    Google Scholar 

  34. See Eq. 25c of Ref. 12.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystyn J. Van Vliet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tweedie, C.A., Van Vliet, K.J. Contact creep compliance of viscoelastic materials via nanoindentation. Journal of Materials Research 21, 1576–1589 (2006). https://doi.org/10.1557/jmr.2006.0197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0197

Navigation