Skip to main content
Log in

Mechanical modulation at the lamellar level in osteonal bone

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The secondary osteon is the fundamental building block of compact cortical bone at the tissue level. Light and scanning electron microscopy have shown that the osteon consists of a laminated cylindrical composite of mineralized collagen fibril lamellae ∼5–7 μm thick. Using scanning nanoindentation and quantitative backscattered electron imaging on secondary osteons from the human femoral midshaft, we found that the indentation modulus shows a periodic variation between ∼24 GPa and ∼27 GPa within a single lamella. The average lamellar value remains nearly constant across the osteon and increases abruptly to more than 30 GPa at the interstitial bone interface. The local mineral content, determined from quantitative backscattered electron imaging at the indented locations, shows also a lamellar level modulation and is positively correlated with the indentation modulus at the same tissue position. We propose that such a mechanically and compositionally modulated structure may be an effective crack-stopping mechanism in bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Currey: Bones—Structure and Mechanics, 2nd ed. (Princeton University Press, Princeton, NJ, 2002).

    Google Scholar 

  2. S. Weiner, W. Traub, H.D. Wagner: Lamellar bone: Structure-function relations. J. Struct. Biol. 126, 241 (1999).

    CAS  Google Scholar 

  3. A. Ascenzi, E. Bonucci, D.S. Bocciare: An electron microscope study on primary periosteal bone. J. Ultrastruct. Res. 18, 605 (1967).

    CAS  Google Scholar 

  4. A. Ascenzi, E. Bonucci, D.S. Bocciare: An electron microscope study of osteon calcification. J. Ultrastruct. Res. 12, 287 (1965).

    CAS  Google Scholar 

  5. W. Gebhardt: Regarding the functionally important assembly techniques of the small scale and large scale building blocks of the vertebral bone II: Special part: The building of the Haversian lamellar system and its functional meaning. Arch. Entwickl. Mech. Org. 20, 187 (1906).

    Google Scholar 

  6. S. Weiner, T. Arad, I. Sabanay, W. Traub: Rotated plywood structure of primary lamellar bone in the rat: Orientations of the collagen fibril arrays. Bone 20, 509 (1997).

    CAS  Google Scholar 

  7. M.M. Giraudguille: Twisted plywood architecture of collagen fibrils in human compact-bone osteons. Calcif. Tissue Int. 42, 167 (1988).

    CAS  Google Scholar 

  8. G. Marotti, M.A. Muglia, C. Palumbo: Structure and function of lamellar bone. Clin. Rheumatol. 13, 63 (1994).

    Google Scholar 

  9. M.P. Barbos, P. Bianco, A. Ascenzi, A. Boyde: Collagen orientation in compact-bone. 2. Distribution of lamellae in the whole of the human femoral-shaft with reference to its mechanical-properties. Metab. Bone Dis. Relat. Res. 5, 309 (1984).

    Google Scholar 

  10. A. Ascenzi, P. Baschieri, A. Benvenuti: The torsional properties of single selected osteons. J. Biomech. 27, 875 (1994).

    CAS  Google Scholar 

  11. A. Ascenzi, M.G. Ascenzi, A. Benvenuti, F. Mango: Pinching in longitudinal and alternate osteons during cyclic loading. J. Biomech. 30, 689 (1997).

    CAS  Google Scholar 

  12. J.Y. Rho, P. Zioupos, J.D. Currey, G.M. Pharr: Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25, 295 (1999).

    CAS  Google Scholar 

  13. J. Xu, J.Y. Rho, S.R. Mishra, Z. Fan: Atomic force microscopy and nanoindentation characterization of human lamellar bone prepared by microtome sectioning and mechanical polishing technique. J. Biomed. Mater. Res. A 67A, 719 (2003).

    CAS  Google Scholar 

  14. C.E. Hoffler, K.E. Moore, K. Kozloff, P.K. Zysset, M.B. Brown, S.A. Goldstein: Heterogeneity of bone lamellar-level elastic moduli. Bone 26, 603 (2000).

    CAS  Google Scholar 

  15. P. Fratzl, H.F. Jakob, S. Rinnerthaler, P. Roschger, K. Klaushofer: Position-resolved small-angle x-ray scattering of complex biological materials. J. Appl. Crystallogr. 30, 765 (1997).

    CAS  Google Scholar 

  16. I. Zizak, P. Roschger, O. Paris, B.M. Misof, A. Berzlanovich, S. Bernstorff, H. Amenitsch, K. Klaushofer, P. Fratzl: Characteristics of mineral particles in the human bone/cartilage interface. J. Struct. Biol. 141, 208 (2003).

    CAS  Google Scholar 

  17. W. Tesch, N. Eidelman, P. Roschger, F. Goldenberg, K. Klaushofer, P. Fratzl: Graded microstructure and mechanical properties of human crown dentin. Calcif. Tissue Int. 69, 147 (2001).

    CAS  Google Scholar 

  18. S. Weiner, H.D. Wagner: The material bone: Structure mechanical function relations. Ann. Rev. Mater. Sci. 28, 271 (1998).

    CAS  Google Scholar 

  19. D. Jaschouz, O. Paris, P. Roschger, H.S. Hwang, P. Fratzl: Pole figure analysis of mineral nanoparticle orientation in individual trabecula of human vertebral bone. J. Appl. Crystallogr. 36, 494 (2003).

    CAS  Google Scholar 

  20. I. Zizak, O. Paris, P. Roschger, S. Bernstorff, H. Amenitsch, K. Klaushofer, P. Fratzl: Investigation of bone and cartilage by synchrotron scanning-SAXS and -WAXD with micrometer spatial resolution. J. Appl. Crystallogr. 33, 820 (2000).

    CAS  Google Scholar 

  21. H.S. Gupta, S. Schratter, W. Tesch, P. Roschger, A. Berzlanovich, T. Schoeberl, K. Klaushofer, P. Fratzl: Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface. J. Struct. Biol. 149, 138 (2005).

    CAS  Google Scholar 

  22. P. Roschger, H.S. Gupta, A. Berzlanovich, G. Ittner, D.W. Dempster, P. Fratzl, F. Cosman, M. Parisien, R. Lindsay, J.W. Nieves, K. Klaushofer: Constant mineralization density distribution in cancellous human bone. Bone 32, 316 (2003).

    CAS  Google Scholar 

  23. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Google Scholar 

  24. U. Stachewicz: Mechanical mapping of compact bone with lamellar resolution. M.Sc. Thesis, Faculty of Materials Science and Ceramics, Department of Biomaterials, AGH University of Science and Technology, Krakow, Poland (2004).

    Google Scholar 

  25. H.M. Goldman, T.G. Bromage, C.D.L Thomas, J.G. Clement: Preferred collagen fiber orientation in the human mid-shaft femur. Anatomical Record A—Disc. Molecular Cellular Evolutionary Bio. 272A, 434 (2003).

    CAS  Google Scholar 

  26. J.L. Katz, A. Meunier: Scanning acoustic microscope studies of the elastic properties of osteons and osteon lamallae. J. Biomech. Eng.—Trans. ASME 115, 543 (1993).

    CAS  Google Scholar 

  27. J.Y. Rho, S.R. Mishra, K. Chung, J. Bai, G.M. Pharr: Relationship between ultrastructure and the nanoindentation properties of intramuscular herring bones. Ann. Biomed. Eng. 29, 1082 (2001).

    CAS  Google Scholar 

  28. P. Fratzl, H.S. Gupta, E.P. Paschalis, P. Roschger: Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14, 2115 (2004).

    CAS  Google Scholar 

  29. S. Suresh, Y. Sugimura, T. Ogawa: Fatigue cracking in materials with brittle surface-coatings. Scripta Metall. Mater. 29, 237 (1993).

    CAS  Google Scholar 

  30. F. Erdogan: Fracture-mechanics of functionally graded materials. Compos. Eng. 5, 753 (1995).

    Google Scholar 

  31. O. Kolednik: The yield stress gradient effect in inhomogeneous materials. Int. J. Solids Struct. 37, 781 (2000).

    Google Scholar 

  32. H. Peterlik, P. Roschger, K. Klaushofer, P. Fratzl: From brittle to ductile fracture of bone. Nat. Mater. 5, 52 (2006).

    CAS  Google Scholar 

  33. S.J. Qiu, D.S. Rao, D.P. Fyhrie, S. Palnitkar, A.M. Parfitt: The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone 37, 10 (2005).

    Google Scholar 

  34. B.J.F Bruet, H.J. Qi, M.C. Boyce, R. Panas, K. Tai, L. Frick, C. Ortiz: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20, 2400 (2005).

    CAS  Google Scholar 

  35. X. Li, W.C. Chang, Y.J. Chao, R. Wang, M. Chang: Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 4, 613 (2004).

    CAS  Google Scholar 

  36. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).

    Google Scholar 

  37. A.J. Bushby, V.L. Ferguson, A. Boyde: Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J. Mater. Res. 19, 249 (2004).

    CAS  Google Scholar 

  38. S. Hengsberger, A. Kulik, P. Zysset: Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 30, 178 (2002).

    CAS  Google Scholar 

  39. C.E. Hoffler, X.E. Guo, P. Zysset, K.E. Moore, and S.A. Goldstein: Evaluation of bone microstructural properties: Effect of testing conditions, depth, repetition, time delay and displacement rate, in Proceedings of the 1997 Bioengineering Conference, Sun River, OR, 1997, edited by K.B. Chandran, R. Vanderby, Jr., and M.S. Hefzy, (ASME International, New York), pp. 567–568.

  40. J.K. Weaver: Microscopic hardness of bone. J. Bone Joint Surg. Am. A48, 273 (1966).

    Google Scholar 

  41. P. Fratzl, M. Groschner, G. Vogl, H. Plenk, J. Eschberger, N. Fratzl-Zelman, K. Koller, K. Klaushofer: Mineral crystals in calcified tissues—A comparative study by SAXS. J. Bone Miner. Res. 7, 329 (1992).

    CAS  Google Scholar 

  42. W.J. Landis, M.C. Paine, M.J. Glimcher: Electron microscopic observations of bone tissue prepared anhydrously in organic solvents. J. Ultrastruct. Res. 59, 1 (1977).

    CAS  Google Scholar 

  43. M.L. Oyen, R.F. Cook: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, H.S., Stachewicz, U., Wagermaier, W. et al. Mechanical modulation at the lamellar level in osteonal bone. Journal of Materials Research 21, 1913–1921 (2006). https://doi.org/10.1557/jmr.2006.0234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0234

Navigation