Skip to main content
Log in

Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical properties of biological materials are well adjusted to their function. An excellent example for such materials is the cuticle or exoskeleton of arthropods. In this study, dehydrated cuticle of the American lobster Homarus americanus was examined as a model for a mineralized biological composite material. Nanoindentation testing is a powerful method for revealing gradients and anisotropy in the hardness and the elastic properties of such materials. The air-dried test specimens stem from different parts of the crusher claw with different biological functions. Both the exocuticle and the endocuticle were probed in normal and in the transverse direction to the cuticle surface. For estimating variations in the grade of mineralization, the samples which were tested as cross-sections of the cuticle were analyzed by the use of energy dispersive x-ray mapping. The microstructure of fracture surfaces of the test specimens was investigated using scanning electron microscopy. Due to the use of dehydrated samples, our results do not reflect the exact properties of lobster cuticle in the natural hydrated state, but they can be regarded as a fairly good approximation to the in vivo state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.F.V Vincent, J.D. Currey: Mechanical Properties of Biological Materials (Society for Experimental Biology, Cambridge, UK, 1980).

    Google Scholar 

  2. M.F. Ashby, U.G.K Wegst: The mechanical efficiency of natural materials. Philos. Mag. 84, 2167 (2004).

    Article  Google Scholar 

  3. D.F. Travis: Structural features of mineralization from tissue to macromolecular levels of organization in the decapod Crustacea. Ann. N.Y. Acad. Sci. 109, 177 (1963).

    Article  CAS  Google Scholar 

  4. F.J. Vernberg, W.B. Vernberg: The Biology of Crustacea (Academic Press, New York, 1983).

    Google Scholar 

  5. M.N. Horst, J.A. Freeman: The Crustacean Integument: Morphology and Biochemistry (CRC Press, Ann Arbor, MI, 1993).

    Google Scholar 

  6. K.E. Carpenter: The Living Marine Resources of the Western Central Atlantic, Vol. 1: Introduction, Molluscs, Crustaceans, Hagfishes, Sharks, Batoid Fishes, and Chimaeras. FAO Species Identification Guide for Fishery Purposes (American Society of Ichthyologists and Herpetologists Special Publication No. 5, Food and Agriculture Organization of the United Nations, Rome, 2002), pp. 1–600.

    Google Scholar 

  7. F.C. Meldrum: Calcium carbonate in biomineralisation and biomimetic chemistry. Int. Mater. Rev. 48, 187 (2003).

    Article  CAS  Google Scholar 

  8. Y. Bouligand: Ultrastructural aspects of the calcification in crabs, in 7th Int. Congress of Electron Microscopy 3 (Grenoble, France, 1970), p. 105–106.

    Google Scholar 

  9. M-M. Giraud-Guille: Plywood structures in nature. Curr. Opin. Solid State Mater. Sci. 3, 221 (1998).

    Article  CAS  Google Scholar 

  10. M-M. Giraud-Guille: Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy. J. Struct. Biol. 103, 232 (1990).

    Article  CAS  Google Scholar 

  11. R.D. Roer, R.M. Dillaman: The structure and calcification of the crustacean cuticle. Am. Zool. 24, 893 (1984).

    Article  CAS  Google Scholar 

  12. M-M. Giraud-Guille, Y. Bouligand: Crystal growth in a chitin matrix: The study of calcite development in the crab cuticle, in Chitin World edited by Z.S. Karnicki, M.M. Brzeski, P.J. Bykowski, and Wojtasz-Pajak A. (Wirtschaftsverlag NW, Bremerhaven, Germany, 1995), pp. 136–144.

  13. F. Manoli, S. Koutsopoulos, E. Dalas: Crystallization of calcite on chitin. J. Cryst. Growth 182, 116 (1997).

    Article  CAS  Google Scholar 

  14. D. Raabe, P. Romano, C. Sachs, A. Al-Sawalmih, H.G. Brokmeier, S.B. Yi, G. Servos, H.G. Hartwig: Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J. Cryst. Growth 283, 1 (2005).

    Article  CAS  Google Scholar 

  15. N.F. Hadley: The arthropod cuticle. Sci. Am. 255, 104–112(1986).

    Article  Google Scholar 

  16. J.F.V Vincent: Structural Biomaterials (Princeton University Press, Princeton, NJ, 1990).

    Google Scholar 

  17. J.F.V Vincent: Arthropod cuticle: A natural composite shell system. Composites Part A 33, 1311 (2002).

    Article  Google Scholar 

  18. A.C. Neville: Biology of Fibrous Composites (Cambridge University Press, Cambridge, UK, 1993).

    Book  Google Scholar 

  19. J.F.V Vincent, U.G.K Wegst: Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33, 187 (2004).

    Article  Google Scholar 

  20. D. Raabe, A. Al-Sawalmih, P. Romano, C. Sachs, H.G. Brokmeier, S.B. Yi, G. Servos, and H.G. Hartwig: Structure and crystallographic texture of arthropod bio-composites, in Proc. 14th Int. Conf. Text. Mater. ICOTOM 14, 1665 (2005).

    Google Scholar 

  21. D. Raabe, P. Romano, C. Sachs, H. Fabritius, A. Al-Sawalmih, S.B. Yi, G. Servos, H.G. Hartwig: Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater. Sci. Eng., A 421,143–153(2006).

    Article  Google Scholar 

  22. D. Raabe, C. Sachs, P. Romano: The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53, 4281 (2005).

    Article  CAS  Google Scholar 

  23. W.C. Oliver, G.M. Pharr: An improved technique for determining the hardness and elastic modulus using the load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  24. Z. Fan, J.G. Swadener, J.Y. Rho, M.E. Roy, G.M. Pharr: Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J. Orthop. Res. 20, 806 (2002).

    Article  CAS  Google Scholar 

  25. J.D. Currey, A. Nash, W. Bonfield: Calcified cuticle in the stomatopod smashing limb. J. Mater. Sci. 17, 1939 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Raabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachs, C., Fabritius, H. & Raabe, D. Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. Journal of Materials Research 21, 1987–1995 (2006). https://doi.org/10.1557/jmr.2006.0241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0241

Navigation