Skip to main content

Advertisement

Log in

Fracture, aging, and disease in bone

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

From a public health perspective, developing a detailed mechanistic understanding of the well-known increase with age in fracture risk of human bone is essential. This also represents a challenge from materials science and fracture mechanics viewpoints. Bone has a complex, hierarchical structure with characteristic features ranging from nanometer to macroscopic dimensions; it is therefore significantly more complex than most engineering materials. Nevertheless, by examining the micro-/nanostructural changes accompanying the process of aging using appropriate multiscale experimental methods and relating them to fracture mechanics data, it is possible to obtain a quantitative picture of how bone resists fracture. As human cortical bone exhibits rising ex vivo crack-growth resistance with crack extension, its fracture toughness must be evaluated in terms of resistance-curve (R-curve) behavior. While the crack initiation toughness declines with age, the more striking finding is that the crack-growth toughness declines even more significantly and is essentially absent in bone from donors exceeding 85 years in age. To explain such an age-induced deterioration in the toughness of bone, we evaluate its fracture properties at multiple length scales, specifically at the molecular and nano dimensions using vibrational spectroscopies, at the microscale using electron microscopy and hard/soft x-ray computed tomography, and at the macroscale using R-curve measurements. We show that the reduction in crack-growth toughness is associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging, and that this occurs at relatively coarse size scales in the range of tens to hundreds of micrometers. Finally, we briefly describe how specific clinical treatments, e.g., with steroid hormones to treat various inflammatory conditions, can prematurely damage bone, thereby reducing its fracture resistance, whereas regulating the level of the cytokine Transforming Growth Factor-β can offer significant improvements in the stiffness, strength, and toughness of bone and as such may be considered a therapeutic target to treat increased bone fragility induced by aging, drugs, and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.G. Jennings, P. de Boer: Should we operate on nonagenarians with hip fractures? Injury 30, 169 (1999).

    Article  CAS  Google Scholar 

  2. R. Heaney: Is the paradigm shifting? Bone 33, 457 (2003).

    Article  Google Scholar 

  3. P.D. Miller, M.C. Hochberg, L.E. Wehren, P.D. Ross, R.D. Wasnich: How useful are measures of BMD and bone turnover? Curr. Med. Res. Opin. 21, 545 (2005).

    Article  Google Scholar 

  4. S.L. Hui, C.W. Slemenda, C.C. Johnston: Age and bone mass as predictors of fracture in a prospective study. J. Clin. Invest. 81, 1804 (1988).

    Article  CAS  Google Scholar 

  5. T.J. Aspray, A. Prentice, T.J. Cole, Y. Sawo, J. Reeve, R.M. Francis: Low bone mineral content is common but osteoporotic fractures are rare in elderly rural Gambian women. J. Bone Miner. Res. 11, 1019 (1996).

    Article  CAS  Google Scholar 

  6. A. Burstein, D. Reilly, M. Martens: Aging of bone tissue: Mechanical properties. J. Bone Joint Surg. 58A, 82 (1976).

    Article  Google Scholar 

  7. P. Zioupos, J.D. Currey: Changes in the stiffness, strength, and toughness of human cortical bone with age—An underexplored frontier. Bone 22, 57 (1998).

    Article  CAS  Google Scholar 

  8. Y.N. Yeni, T.L. Norman: Fracture toughness of human femoral neck: Effect of microstructure, composition, and age. Bone 26, 499 (2000).

    Article  CAS  Google Scholar 

  9. O. Akkus, F. Adar, M.B. Schaffler: Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34, 443 (2004).

    Article  CAS  Google Scholar 

  10. R.K. Nalla, J.J. Kruzic, J.H. Kinney, R.O. Ritchie: Effect of aging on the toughness of human cortical bone: Evaluation by R-curves. Bone 35, 1240 (2004).

    CAS  Google Scholar 

  11. J.Y. Rho, L. Kuhn-Spearing, P. Zioupos: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92 (1998).

    CAS  Google Scholar 

  12. S. Weiner, H.D. Wagner: The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271 (1998).

    CAS  Google Scholar 

  13. D.R. Eyre, M.A. Paz, P.M. Gallop: Cross-linking in collagen and elastin. Annu. Rev. Biochem. 53, 717 (1984).

    CAS  Google Scholar 

  14. L. Knott, A.J. Bailey: Collagen cross-links in mineralizing tissues: A review of their chemistry, function, and clinical relevance. Bone 22, 181 (1998).

    CAS  Google Scholar 

  15. A. Veis: Collagen fibrallar structure in mineralized and nonmineralized tissues. Curr. Opin. Solid State Mater. Sci. 2, 370 (1997).

    CAS  Google Scholar 

  16. J.D. Currey: Osteons in biomechanical literature. J. Biomech. 15, 717 (1982).

    CAS  Google Scholar 

  17. R.K. Nalla, J.J. Kruzic, J.H. Kinney, R.O. Ritchie: Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials 26, 217 (2005).

    CAS  Google Scholar 

  18. T.C. Lee, A. Staines, D. Taylor: Bone adaptation to load: Microdamage as a stimulus for bone remodeling. J. Anat. 201, 437 (2002).

    CAS  Google Scholar 

  19. W. Bonfield: Advances in the fracture mechanics of cortical bone. J. Biomech. 20, 1071 (1987).

    CAS  Google Scholar 

  20. T.L. Norman, D. Vashishth, D.B. Burr: Fracture toughness of human bone under tension. J. Biomech. 28, 309 (1995).

    CAS  Google Scholar 

  21. X.D. Wang, N.S. Masilamani, J.D. Mabrey, M.E. Alder, C.M. Agrawal: Changes in the fracture toughness of bone may not be reflected in its mineral density, porosity, and tensile properties—Effects of sampling sites and crack orientations. Bone 23, 67 (1998).

    CAS  Google Scholar 

  22. C.U. Brown, Y.N. Yeni, T.L. Norman: Fracture toughness is dependent on bone location- A study of the femoral neck, femoral shaft, and the tibial shaft. J. Biomed. Mater. Res. 49, 380 (2000).

    CAS  Google Scholar 

  23. J.B. Phelps, G.B. Hubbard, X. Wang, C.M. Agrawal: Microstructural heterogeneity and the fracture toughness of bone. J. Biomed. Mater. Res. 51, 735 (2000).

    CAS  Google Scholar 

  24. P. Lucksanambool, W.A.J Higgs, R.J.E.D Higgs, M.W. Swain: Fracture toughness of bovine bone: Influence of orientation and storage media. Biomaterials 22, 3127 (2001).

    Google Scholar 

  25. J.C. Behiri, W. Bonfield: Fracture mechanics of bone—The effects of density, specimen thickness, and crack velocity on longitudinal fracture. J. Biomech. 22, 863 (1989).

    CAS  Google Scholar 

  26. R.O. Ritchie: Mechanisms of fatigue-crack propagation in metals, ceramics and composites: Role of crack tip shielding. Mater. Sci. Eng. 103, 15 (1988).

    Google Scholar 

  27. A.G. Evans: Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 73, 187 (1990).

    CAS  Google Scholar 

  28. R.O. Ritchie: Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fract. 100, 55 (1999).

    CAS  Google Scholar 

  29. R. Steinbrech, R. Knehans, W. Schaawächter: Increase of crack resistance during slow crack growth in Al2O3 bend specimens. J. Mater. Sci. 18, 265 (1983).

    Google Scholar 

  30. P.L. Swanson, C.J. Fairbanks, B.R. Lawn, Y.W. Mai, B.J. Hockey: Crack-interface grain bridging as a fracture resistance mechanism in ceramics: I. Experimental study on alumina. J. Am. Ceram. Soc. 70, 279 (1987).

    Article  CAS  Google Scholar 

  31. Y.W. Mai, B.R. Lawn: Crack–interface grain bridging as a fracture resistance mechanism in ceramics: II. Theoretical fracture mechanics model. J. Am. Ceram. Soc. 70, 289 (1987).

    Article  CAS  Google Scholar 

  32. D. Vashishth, J.C. Behiri, W. Bonfield: Crack growth resistance in cortical bone: Concept of microcrack toughening. J. Biomech. 30, 763 (1997).

    Article  CAS  Google Scholar 

  33. P.C. Wu and D. Vashishth: Age-related changes in cortical bone toughness: Initiation vs. propagation, in Proceedings of the 2nd Joint EMBS/BMES Conference Vol. 1, edited by J.W. Clark and L.V. McIntire (IEEE, 2002), p. 425.

    Google Scholar 

  34. Q.D. Yang, B.N. Cox, R.K. Nalla, R.O. Ritchie: Fracture length scales in human cortical bone: The necessity of nonlinear fracture models. Biomaterials 27, 2095 (2006).

    Article  CAS  Google Scholar 

  35. R.K. Nalla, J.H. Kinney, R.O. Ritchie: Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2, 164 (2003).

    Article  CAS  Google Scholar 

  36. B.A. Bilby, G.E. Cardew, I.C. Howard: Stress intensity factors at the tips of kinked and forked cracks, in Fracture 1977, Vol. 3, edited by D.M.R Taplin (Pergamon Press, Oxford, UK, 1978), pp. 197–200.

    Google Scholar 

  37. B. Cotterell, J.R. Rice: Slightly curved or kinked cracks. Int. J. Fract. 16, 155 (1980).

    Article  Google Scholar 

  38. R. K. Nalla, J.J. Kruzic, J.H. Kinney, M. Balooch, J.W. Ager, III, and R.O. Ritchie: Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Mater. Sci. Eng., C 26 (2006, in press).

  39. J.K. Shang, R.O. Ritchie: Crack bridging by uncracked ligaments during fatigue-crack growth in SiC-reinforced aluminum-alloy composites. Metall. Trans. A 20A, 897 (1989).

    Article  CAS  Google Scholar 

  40. Y.N. Yeni, D.P. Fyhrie: Fatigue damage-fracture mechanics interaction in cortical bone. Bone 30, 509 (2002).

    CAS  Google Scholar 

  41. A.G. Evans, R.M. McMeeking: On the toughening of ceramics by strong reinforcements. Acta Metall. 34, 2435 (1986).

    Google Scholar 

  42. H. Peterlik, P. Roschger, K. Klaushofer, P. Fratzl: From brittle to ductile fracture of bone. Nat. Mater. 5, 53 (2006).

    Google Scholar 

  43. G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, J.A. Cutroni, G.A.G Cidade, G.D. Stucky, D.E. Morse, P.K. Hansma: Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612 (2005).

    CAS  Google Scholar 

  44. N.D. Sahar, S.I. Hong, D.K. Koln: Micro- and nano-structural analysis of damage in bone. Micron 36, 617 (2005).

    Google Scholar 

  45. D. Vashishth, K.E. Tanner, W. Bonfield: Contribution, development and morphology of microcracking in cortical bone during crack propagation. J. Biomech. 33, 1169 (2000).

    CAS  Google Scholar 

  46. D. Vashishth, K.E. Tanner, W. Bonfield: Experimental validation of a microcracking-based toughening mechanism for cortical bone. J. Biomech. 36, 121 (2003).

    CAS  Google Scholar 

  47. A.G. Evans, K.T. Faber: Crack-growth resistance of microcracking brittle materials. J. Am. Ceram. Soc. 67, 255 (1984).

    Google Scholar 

  48. J.W. Hutchinson: Crack tip shielding by micro-cracking in brittle solids. Acta Metall. 35, 1605 (1987).

    CAS  Google Scholar 

  49. R.K. Nalla, J.J. Kruzic, R.O. Ritchie: On the origin of the toughness of mineralized tissue: Microcracking or crack bridging. Bone 34, 790 (2004).

    CAS  Google Scholar 

  50. C.U. Brown, Y.N. Yeni, T.L. Norman: Fracture toughness is dependent on bone location—A study of the femoral neck, femoral shaft, and the tibial shaft. J. Biomed. Mater. Res. 49, 380 (2000).

    CAS  Google Scholar 

  51. P. Zioupos, J.D. Currey, A.J. Hamer: The role of collagen in the declining mechanical properties of aging human cortical bone. J. Biomed. Mater. Res. 2, 108 (1999).

    Google Scholar 

  52. X. Wang, X. Shen, X. Li, C.M. Agrawal: Age-related changes in the collagen network and toughness of bone. Bone 31, 1 (2002).

    Google Scholar 

  53. J.D. Currey, K. Brear, P. Zioupos: The effects of ageing and changes in mineral content in degrading the toughness of human femora. J. Biomech. 29, 257 (1996).

    CAS  Google Scholar 

  54. V.A. Gibson, S.M. Stover, J.C. Gibeling, S.J. Hazelwood, R.B. Martin: Osteonal effects on elastic modulus and fatigue life in equine bone. J. Biomech. 39, 217 (2006).

    CAS  Google Scholar 

  55. E.P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, A.L. Boskey: Bone fragility and collagen cross-links. J. Bone Miner. Res. 19, 2000 (2004).

    Google Scholar 

  56. A. Boskey, R. Mendelsohn: Infrared analysis of bone in health and disease. J. Biomed. Opt. 10, 031102 (2005).

    Google Scholar 

  57. A. Carden, M.D. Morris: Application of vibrational spectroscopy to the study of mineralized tissues (review). J. Biomed. Opt. 5, 259 (2000).

    CAS  Google Scholar 

  58. J.J. Freeman, M.J. Silva: Separation of the Raman spectral signatures of bioapatite and collagen in compact mouse bone bleached with hydrogen peroxide. Appl. Spectrosc. 56, 770 (2002).

    CAS  Google Scholar 

  59. J.A. Timlin, A. Carden, M.D. Morris, J.F. Bonadio, II C.E. Hoffler, K.M. Kozloff, S.A. Goldstein: Spatial distribution of phosphate species in mature and newly generated mammalian bone by hyperspectral Raman imaging. J. Biomed. Opt. 4, 8 (1999).

    Google Scholar 

  60. C.G. Kontoyannis, N.V. Vagenas: FT-Raman spectroscopy: A tool for monitoring the demineralization of bones. Appl. Spectrosc. 54, 1605 (2000).

    CAS  Google Scholar 

  61. R.J. Lakshmi, M. Alexander, J. Kurien, K.K. Mahato, V.B. Kartha: Osteoradionecrosis (ORN) of the mandible: A laser Raman spectroscopic study. Appl. Spectrosc. 57, 1100 (2003).

    CAS  Google Scholar 

  62. A. Carden, R.M. Rajachar, M.D. Morris, D.H. Kohn: Ultrastructural changes accompanying the mechanical deformation of bone tissue: A Raman imaging study. Calcif. Tissue Int. 72, 166 (2003).

    CAS  Google Scholar 

  63. J.W. Ager III, R.K. Nalla, K.L. Breeden, R.O. Ritchie: Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone. J. Biomed. Opt. 10, 034012 (2005).

    CAS  Google Scholar 

  64. R.K. Nalla, M. Balooch, J.W. Ager III, J.J. Kruzic, J.H. Kinney, R.O. Ritchie: Effects of polar solvents on the fracture resistance of dentin: Role of water hydration. Acta Biomater. 1, 31 (2005).

    CAS  Google Scholar 

  65. G.M. Kiebzak: Age-related bone changes. Exp. Gerontol. 26, 171 (1991).

    CAS  Google Scholar 

  66. C. Cooper, C. Coupland, M. Mitchell: Rheumatoid arthritis, corticosteroid therapy, and hip fracture. Ann. Rheum. Dis. 54, 49 (1995).

    CAS  Google Scholar 

  67. N.E. Lane: An update on glucocorticoid-induced osteoporosis. Rheum. Disease Clin. N. Am. 27, 235 (2001).

    CAS  Google Scholar 

  68. K.G. Saag: Glucocorticoid-induced osteoporosis. Endocrinol. Metab. Clin. N. Am. 32, 135 (2003).

    CAS  Google Scholar 

  69. T.P. Van Staa, H.S. Leufkens, C. Cooper: The epidemiology of cortico-steroid osteoporosis. A meta-analysis. Osteoporos. Int. 13, 777 (2002).

    Google Scholar 

  70. T.P. Van Staa, R.F. Laan, I.P. Barton, S. Cohen, D.M. Reid, C. Cooper: Bone density threshold and other predictors of vertebral fractures in patients receiving oral Glucocorticoid therapy. Arthritis Rheum. 48, 3224 (2003).

    Article  CAS  Google Scholar 

  71. N.E. Lane, W. Yao, M. Balooch, R.K. Nalla, G. Balooch, S. Habelitz, J.H. Kinney, L. Bonewald: Glucocorticoid treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo treated or estrogen deficient mice. J. Bone Miner. Res. 21, 466 (2006).

    Article  CAS  Google Scholar 

  72. G. Balooch, M. Balooch, R.K. Nalla, S. Schilling, E.H. Filvaroff, G.W. Marshall, S.J. Marshall, R.O. Ritchie, R. Derynck, T. Alliston: TGF-β regulates the mechanical properties and composition of bone matrix. Proc. Natl. Acad. Sci. USA 102, 18813 (2005).

    Article  CAS  Google Scholar 

  73. J.J. Kruzic, R.K. Nalla, J.H. Kinney, R.O. Ritchie: Crack blunting, crack bridging and resistance-curve fracture mechanics of dentin: Effect of hydration. Biomaterials 24, 5209 (2003).

    Article  CAS  Google Scholar 

  74. J.H. Kinney, R.K. Nalla, J.A. Pople, T.M. Breunig, R.O. Ritchie: Age-related transparent root dentin: Mineral concentration, crystallite size, and mechanical properties. Biomaterials 26, 3363 (2005).

    Article  CAS  Google Scholar 

  75. O. Akkus, A. Polyakova-Akkus, F. Adar, M.B. Schaffler: Aging of microstructural compartments in human compact bone. J. Bone Miner. Res. 18, 1012 (2003).

    Article  CAS  Google Scholar 

  76. M.B. Schaffler, K. Choi, C. Milgrom: Aging and matrix microdamage accumulation in human compact bone. Bone 17, 521 (1995).

    Article  CAS  Google Scholar 

  77. R.W. McCalden, J.A. McGeough, M.B. Barker, C.M. Court-Brown: Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J. Bone Joint Surg. Am. 75, 1193 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Ritchie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ager, J.W., Balooch, G. & Ritchie, R.O. Fracture, aging, and disease in bone. Journal of Materials Research 21, 1878–1892 (2006). https://doi.org/10.1557/jmr.2006.0242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0242

Navigation