Skip to main content
Log in

Spherical indentation load-relaxation of soft biological tissues

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Elastic-viscoelastic correspondence was used to generate displacement–time solutions for spherical indentation testing of soft biological materials with time-dependent mechanical behavior. Boltzmann hereditary integral operators were used to determine solutions for indentation load-relaxation following a constant displacement rate ramp. A “ramp correction factor” approach was used for routine analysis of experimental load-relaxation data. Experimental load-relaxation tests were performed on rubber, as well as kidney tissue and costal cartilage, two hydrated soft biological tissues with vastly different mechanical responses. The experimental data were fit to the spherical indentation ramp-relaxation solutions to obtain values of short- and long-time shear modulus and of material time constants. The method is used to demonstrate linearly viscoelastic responses in rubber, level-independent indentation results for costal cartilage, and age-independent indentation results for kidney parenchymal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Cooper, B. Barlow, C. Discala, D. String: Mortality and truncal injury: The pediatric perspective. J. Pediatr. Surg. 29(1), 33 (1994).

    Article  CAS  Google Scholar 

  2. M.L. Nance, N. Lutz, K.B. Arbogast, R.A. Cornejo, M.J. Kallan, F.K. Winston, D.R. Durbin: Optimal restraint reduces the risk of abdominal injury in children involved in motor vehicle crashes. Ann. Surg. 239(1), 127 (2004).

    Article  Google Scholar 

  3. M. Farshad, M. Barbezat, P. Flueler, F. Schmidlin, P. Graber, P. Niederer: Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma. J. Biomech. 32, 417 (1999).

    Article  CAS  Google Scholar 

  4. A. Tamura, K. Omori, K. Miki, J. Lee, K. Yang, and A. King: Mechanical characterization of porcine abdominal organs, in Proc. 46th Stapp Car Crash Conference SAE Paper No. 2002-22-0003, (Point Verdra Beach, FL, 2002), edited by Stapp advisory committee, (SAE International: Warrendale, PA, 2002), p. 55.

    Google Scholar 

  5. H. Yamada: Strength of Biological Materials (Kreiger, Huntingdon, NY, 1971), pp. 205, 207.

    Google Scholar 

  6. S. Nasseri, L. Bilston, N. Phan-Thein: Viscoelastic properties of pig kidney in shear, experimental results and modeling. Rheol. Acta 41, 180 (2002).

    Article  CAS  Google Scholar 

  7. J. Snedeker, M. Barbezat, P. Niederer, F. Schmidlin, M. Farshad: Strain energy density as a rupture criterion for the kidney: Impact tests on porcine organs, finite element simulation, and a baseline comparison between human and porcine tissues. J. Biomech. 38, 993 (2005).

    Article  CAS  Google Scholar 

  8. L. Rosenberg, B. Johnson, M. Schubert: Proteinpolysaccharides from human articular and costal cartilage. J. Clin. Invest. 44, 1647 (1965).

    Article  CAS  Google Scholar 

  9. W. Hukins, D.P. Knight, J. Woodhead-Galloway: Amianthoid change: Orientation normal collagen fibrils during aging. Science 194, 622 (1976).

    Article  CAS  Google Scholar 

  10. R. Mallinger, L. Stockinger: Amianthoid (asbestoid) transformation: Electron microscopial studies on aging human costal cartilage. Am. J. Anat. 181(1), 23 (1988).

    Article  CAS  Google Scholar 

  11. R. Roy, S.S. Kohles, V. Zaporojan, G.M. Peretti, M.A. Randolph, J. Xu, L.J. Bonassar: Analysis of bending behavior of native and engineered auricular and costal cartilage. J. Biomed. Mater. Res. A 68, 597 (2004).

    Article  Google Scholar 

  12. J.Y. Rho, T.Y. Tsui, G.M. Pharr: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18, 1325 (1997).

    Article  CAS  Google Scholar 

  13. A.J. Bushby, V.L. Ferguson, A. Boyde: Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J. Mater. Res. 19, 249 (2004).

    Article  CAS  Google Scholar 

  14. A.K. Bembey, M.L. Oyen, A.J. Bushby, A. Boyde: Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos. Mag. (2006) (in press).

    Google Scholar 

  15. A. Gefen, N. Gefen, Q. Zhu, R. Raghupathi, S. Margulies: Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma. 20, 1163 (2003).

    Article  Google Scholar 

  16. K. Miller: Constitutive modeling of abdominal organs. J. Biomech. 33, 367 (2000).

    Article  CAS  Google Scholar 

  17. S. Lai-fook, T. Wilson, R. Hyatt, J. Rodarte: Elastic constants of inflated lobes of dog lungs. J. Appl. Physiol. 40, 508 (1976).

    Article  CAS  Google Scholar 

  18. Y. Zheng, A. Mak, B. Lue: Objective assessment of limb tissue elasticity: Development of a manual indentation procedure. J. Rehabil. Res. Dev. 36(2), 71 (1999).

    CAS  Google Scholar 

  19. W.C. Hayes, L.F. Mockros: Viscoelastic properties of human articular cartilage. J. Appl. Physiol. 31, 562 (1971).

    Article  CAS  Google Scholar 

  20. W. Hayes, L. Keer, G. Herrmann, L. Mockros: A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5, 541 (1972).

    Article  CAS  Google Scholar 

  21. J. Parsons, J. Black: The viscoelastic shear behavior of normal rabbit articular cartilage. J. Biomech. 10, 21 (1977).

    Article  CAS  Google Scholar 

  22. A.F. Mak, W.M. Lai, V.C. Mow: Biphasic indentation of articular cartilage—I. Theoretical analysis. J. Biomech. 20, 703 (1987).

    Article  CAS  Google Scholar 

  23. M. Beek, J. Koolstra, T. Van Eijden: Human temporomandibular joint disc cartilage as a poroelastic material. Clin. Biomech. (Bristol, Avon) 18, 69 (2003).

    Article  CAS  Google Scholar 

  24. E.H. Lee, J.R.M Radok: Contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).

    Article  Google Scholar 

  25. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).

    Book  Google Scholar 

  26. M.L. Oyen: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094 (2005).

    Article  CAS  Google Scholar 

  27. L. Cheng, X. Xia, L.E. Scriven, W.W. Gerberich: Spherical-tip indentation of viscoelastic material. Mech. Mater. 37, 213 (2005).

    Article  Google Scholar 

  28. M. Sakai: Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter. Philos. Mag. A 82, 1841 (2002).

    Article  CAS  Google Scholar 

  29. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Kent.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattice, J.M., Lau, A.G., Oyen, M.L. et al. Spherical indentation load-relaxation of soft biological tissues. Journal of Materials Research 21, 2003–2010 (2006). https://doi.org/10.1557/jmr.2006.0243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0243

Navigation