Skip to main content
Log in

Monolithic nanoporous copper by dealloying Mn–Cu

  • Outstanding Meeting Paper
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Monolithic nanoporous copper was synthesized by dealloying Mn0.7Cu0.3 by two distinct methods: potentiostatically driven dealloying and free corrosion. Both the ligament size and morphology were found to be highly dependent on the dealloying methods and conditions. For example, ligaments from 16 nm–125 nm were obtained by dealloying either electrochemically or by free corrosion, respectively. Optimization of the starting Mn–Cu alloy microstructure allowed us to synthesize uniform porous structures; but we found cracking to be unavoidable. Despite the presence of unavoidable defects, the nanoporous material still exhibits higher than expected yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Pan, A. Zavalin, A. Ueda, M. Guo, M. Groza, A. Burger, R. Mu, S.H. Morgan: Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates. Appl. Spectrosc. 59, 782 (2005).

    Article  CAS  Google Scholar 

  2. D.M. Kuncicky, S.D. Christesen, O.D. Velev: Role of the micro- and nanostructure in the performance of surface-enhanced Raman scattering substrates assembled from gold nanoparticles. Appl. Spectrosc. 59, 401 (2005).

    Article  CAS  Google Scholar 

  3. T.L. Williamson, X.Y. Guo, A. Zukoski, A. Sood, D.J. Diaz, P.W. Bohn: Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces. J. Phys. Chem. B 109, 20186 (2005).

    Article  CAS  Google Scholar 

  4. A.J. Smith, D.L. Trimm: The preparation of skeletal catalysts. Annu. Rev. Mater. Res. 35, 127 (2005).

    Article  CAS  Google Scholar 

  5. J. Biener, A.M. Hodge, A.V. Hamza, L.M. Hsiung, J.H. Satcher: Nanoporous Au: A high yield strength material. J. Appl. Phys. 97, 023401 (2005).

    Article  Google Scholar 

  6. R. Li, K. Sieradzki: Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168 (1992).

    Article  CAS  Google Scholar 

  7. R.C. Newman, S.G. Corcoran, J. Erlebacher, M.J. Aziz, K. Sieradzki: Alloy corrosion. MRS Bull. 24, 24 (1999).

    Article  CAS  Google Scholar 

  8. J. Erlebacher, K. Sieradzki: Pattern formation during dealloying. Scripta Mater. 49, 991 (2003).

    Article  CAS  Google Scholar 

  9. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).

    Article  CAS  Google Scholar 

  10. A.J. Forty, P. Durkin: A micro-morphological study of the dissolution of silver-gold alloys in nitric-acid. Philos. Mag. A 42, 295 (1980).

    Article  CAS  Google Scholar 

  11. K. Sieradzki, J.S. Kim, A.T. Cole, R.C. Newman: The relationship between dealloying and transgranular stress-corrosion cracking of Cu-Zn and Cu-Al alloys. J. Electrochem. Soc. 134, 1635 (1987).

    Article  CAS  Google Scholar 

  12. J. Erlebacher: An atomistic description of dealloying—Porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 151, C614 (2004).

    Article  CAS  Google Scholar 

  13. K. Sieradzki, R.R. Corderman, K. Shukla, R.C. Newman: Computer-simulations of corrosion—selective dissolution of binary-alloys. Philos. Mag. A 59, 713 (1989).

    Article  CAS  Google Scholar 

  14. J.R. Mellor, N.J. Coville, A.C. Sofianos, R.G. Copperthwaite: Raney copper catalysts for the water-gas shift reaction: I. Preparation, activity and stability. Appl. Catal., A 164, 171 (1997).

    Article  CAS  Google Scholar 

  15. J.R. Mellor, N.J. Coville, S.H. Durbach, R.G. Copperthwaite: Acid leached Raney copper catalysts for the water-gas shift reaction. Appl. Catal., A 171, 273 (1998).

    Article  CAS  Google Scholar 

  16. D.S. Keir, M.J. Pryor: The dealloying of copper-manganese alloys. J. Electrochem. Soc. 127, 2138 (1980).

    Article  CAS  Google Scholar 

  17. U.S. Min, J.C.M Li: The microstructure and dealloying kinetics of a Cu-Mn alloy. J. Mater. Res. 9, 2878 (1994).

    Article  CAS  Google Scholar 

  18. M.J. Pryor, J.C. Fister: The mechanism of dealloying of copper solid-solutions and intermetallic phases. J. Electrochem. Soc. 131, 1230 (1984).

    Article  CAS  Google Scholar 

  19. K. Thornton, N. Akaiwa, P.W. Voorhees: Large-scale simulations of Ostwald ripening in elastically stressed solids. II. Coarsening kinetics and particle size distribution. Acta Mater. 52, 1365 (2004).

    Article  CAS  Google Scholar 

  20. A.J. Smith, T. Tran, M.S. Wainwright: Kinetics and mechanism of the preparation of Raney (R) copper. J. Appl. Electrochem. 29, 1085 (1999).

    Article  CAS  Google Scholar 

  21. M. Raney: Method of preparing catalytic material. U.S. Patent No. 1,563,587 (1925).

    Google Scholar 

  22. M. Raney: Method of producing finely divided nickel. U.S. Patent No. 1,628,190 (1927).

    Google Scholar 

  23. ASM Handbook, Vol. 3: Alloy Phase Diagrams, edited by H. Baker (ASM International, Materials Park, OH, 1992) p. 172.

    Google Scholar 

  24. A. Dursun, D.V. Pugh, S.G. Corcoran: Dealloying of Ag-Au alloys in halide-containing electrolytes—Affect on critical potential and pore size. J. Electrochem. Soc. 150, B355 (2003).

    Article  CAS  Google Scholar 

  25. Y. Ding, Y.J. Kim, J. Erlebacher: Nanoporous gold leaf: “Ancient technology”/advanced material. Adv. Mater. 16, 1897 (2004).

    Article  CAS  Google Scholar 

  26. O. Belmont, C. Faivre, D. Bellet, Y. Brechet: About the origin and the mechanisms involved in the cracking of highly porous silicon layers under capillary stresses. Thin Solid Films 276, 219 (1996).

    Article  CAS  Google Scholar 

  27. R.S. Dean, J.R. Long, T.R. Graham, E.V. Potter, E.T. Hayes: The copper-manganese equilibrium system. Transactions of the ASM 34, 443 (1945).

    Google Scholar 

  28. J.R. Greer, W.D. Nix: Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A. 80, 1625 (2005).

    Article  CAS  Google Scholar 

  29. J.R. Greer, W.C. Oliver, W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).

    Article  CAS  Google Scholar 

  30. J.R. Patel, M. Cohen: Criterion for the action of applied stress in the martensitic transformation. Acta Mater. 1, 531 (1953).

    Article  CAS  Google Scholar 

  31. L.J. Gibson, M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1997) p. 209.

    Book  Google Scholar 

  32. Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Hayes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, J.R., Hodge, A.M., Biener, J. et al. Monolithic nanoporous copper by dealloying Mn–Cu. Journal of Materials Research 21, 2611–2616 (2006). https://doi.org/10.1557/jmr.2006.0322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0322

Navigation