Skip to main content
Log in

Formation of loops on the surface of carbon nanofibers synthesized by plasma-enhanced chemical vapor deposition using an inductively coupled plasma reactor

  • Rapid Communication
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbon nanofibers (CNFs) were synthesized by both high-density plasma-enhanced chemical vapor deposition (CVD) and thermal CVD. The growth in the former was carried out in an inductively coupled plasma (ICP) reactor. The multilayer loop structure, which was reported to be found on both the inner and outer surfaces of cup-stacked-type CNFs grown using thermal CVD only after heat treatment above 1500 °C, was observed in the as-grown CNFs only on the outer surface using ICP-CVD. The dangling bonds caused by plasma etching and the bonding between edge carbon atoms aided by the high-density plasma are considered the main reasons of the formation of multilayer loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chambers, C. Park, R.T.K Baker, N.M. Rodriguez: Hydrogen storage in graphite nanofibers. Phys. Chem. B 102, 4253 (1998).

    Article  CAS  Google Scholar 

  2. M. Endo, Y.A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki, M.S. Dresselhaus: Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80, 1267 (2002).

    Article  CAS  Google Scholar 

  3. M. Endo, Y.A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, M.S. Dresselhaus: Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment. Carbon 41, 1941 (2003).

    Article  CAS  Google Scholar 

  4. M. Endo, B.J. Lee, Y.A. Kim, Y.J. Kim, H. Muramatsu, T. Yanagisawa, T. Hayashi, M. Terrones, M.S. Dresselhaus: Transition behaviour in the transformation from active end planes to stable loops caused by annealing. N. J. Phys. 5, 121.1 (2003).

    Article  Google Scholar 

  5. G.B. Zheng, H. Sano, Y. Uchiyama: New structure of carbon nanofibers after high-temperature heat-treatment. Carbon 41, 853 (2003).

    Article  CAS  Google Scholar 

  6. L.B. Avdeeva, O.V. Goncharova, D.I. Kochubey, V.I. Zaikovskii, L.M. Plyasova, B.N. Novgorodov, Sh.K. Shaikhutdinov: Coprecipitated Ni–alumina and Ni–Cu–alumina catalysts of methane decomposition and carbon deposition. II. Evolution of the catalysts in reaction. Appl. Catal., A: General 141, 117 (1996).

    Article  CAS  Google Scholar 

  7. Sh.K. Shaikhutdinov, L.B. Avdeeva, O.V. Goncharova, D.I. Kochubey, B.N. Novgorodov, L.M. Plyasova: Coprecipitated Ni–Al and Ni–Cu–Al catalysts for methane decomposition and carbon deposition. I. Genesis of calcined and reduced catalysts. Appl. Catal., A: General 126, 125 (1995).

    Article  CAS  Google Scholar 

  8. Y. Li, J. Chen, L. Chang: Catalytic growth of carbon fibers from methane on a nickel-alumina composite catalyst prepared from Feitknecht compound precursor. Appl. Catal., A: General 163, 45 (1997).

    Article  CAS  Google Scholar 

  9. Y.F. Li, J.S. Qiu, Z.B. Zhao, T.H. Wang, Y.P. Wang, W. Li: Bamboo-shaped carbon tubes from coal. Chem. Phys. Lett. 366, 544 (2002).

    Article  CAS  Google Scholar 

  10. J. Chen, Y. Li, Y. Ma, Y. Qin, L. Chang: Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions. Carbon 39, 1467 (2001).

    Article  CAS  Google Scholar 

  11. P.H. Tan, S. Dimovski, Y. Gogotsi: Raman scattering of non-planar graphite: Arched edges, polyhedral crystals, whiskers and cones. Philos. Trans. R. Soc. London, Ser. A 362, 2289 (2004).

    Article  CAS  Google Scholar 

  12. Y. Gogotsi, J.A. Libera, N. Kalashnikov, M. Yoshimura: Graphite polyhedral crystals. Science 290, 317 (2000).

    Article  CAS  Google Scholar 

  13. H. Murayama, T. Maeda: A novel form of filamentous graphite. Nature 345, 791 (1990).

    Article  CAS  Google Scholar 

  14. K. Moriguchi, S. Munetoh, M. Abe, M. Yonemura, K. Kamei, A. Shintani, A. Omaru, M. Nagamine: Nano-tube-like surface structure in graphite particles and its formation mechanism: A role in anodes of lithium-ion secondary batteries. J. Appl. Phys. 88, 6369 (2000).

    Article  CAS  Google Scholar 

  15. P.J.F Harris, S.C. Tsang: High-resolution electron microscopy studies of non-graphitizing carbons. Philos. Mag. A 76, 667 (1997).

    Article  CAS  Google Scholar 

  16. N.A. Kiselev, J. Sloan, D.N. Zakharov, E.F. Kukovitskii, J.L. Hutchison, J. Hammer, A.S. Kotosonov: Carbon nanotubes from polyethylene precursors: Structure and structural changes caused by thermal and chemical treatment revealed by HREM. Carbon 36, 1149 (1998).

    Article  CAS  Google Scholar 

  17. S.V. Rotkin, Y. Gogotsi: Analysis of non-planar graphitic structures: From arched edge planes of graphite crystals to nanotubes. Mater. Res. Innovations 5, 191 (2002).

    Article  CAS  Google Scholar 

  18. D. Ugarte, T. Stöckli, J. Bonard, A. Châtelain, W.A. De Heer: Capillarity in carbon nanotubes, in The Science and Technology of Carbon Nanotubes, edited by K. Tanaka, T. Yamabe, and K. Fukui (Elsevier, Oxford, UK, 1999), pp. 128–142.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinn-Shyong Tzeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzeng, SS., Wang, PL., Wu, TY. et al. Formation of loops on the surface of carbon nanofibers synthesized by plasma-enhanced chemical vapor deposition using an inductively coupled plasma reactor. Journal of Materials Research 21, 2440–2443 (2006). https://doi.org/10.1557/jmr.2006.0330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0330

Navigation