Skip to main content
Log in

Local temperature rises during mechanical testing of metallic glasses

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Under ambient conditions, plastic flow in metallic glasses is sharply localized into shear bands. The heat content of, and consequent temperature rise at, shear bands in three bulk metallic glasses are compared using a recently reported fusible coating method. The minimum shear offsets necessary to detect local heating are determined. It is shown that the dependence of heat content on offset is consistent with frictional heating in the band. The effective stress on the band undergoing shear is 50–70% of the macroscopic shear stress, a ratio compared with simulations of shear-band initiation and operation. It is also noted that frictional heating can occur not only at shear bands, but also at mixed-mode cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).

    CAS  Google Scholar 

  2. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    CAS  Google Scholar 

  3. W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45 (2004).

    Google Scholar 

  4. M.F. Ashby and A.L. Greer: Metallic glasses as structural materials. Scripta Mater. 54, 321 (2006).

    CAS  Google Scholar 

  5. J.J. Lewandowski, W.H. Wang, and A.L. Greer: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).

    CAS  Google Scholar 

  6. P.E. Donovan and W.M. Stobbs: The structure of shear bands in metallic glasses. Acta Metall. 29, 1419 (1981).

    CAS  Google Scholar 

  7. Y. Zhang and A.L. Greer: Thickness of shear bands in metallic glasses. Appl. Phys. Lett. 89, 071907 (2006).

    Google Scholar 

  8. F. Spaepen: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    CAS  Google Scholar 

  9. H. Bei, S. Xie, and E.P. George: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).

    CAS  Google Scholar 

  10. J.J. Lewandowski and A.L. Greer: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).

    CAS  Google Scholar 

  11. L.H. Dai, M. Yan, L.F. Liu, and Y.L. Bai: Adiabatic shear banding instability in bulk metallic glasses. Appl. Phys. Lett. 87, 141916 (2005).

    Google Scholar 

  12. B. Yang, P.K. Liaw, G. Wang, M. Morrison, C.T. Liu, R.A. Buchanan, and Y. Yokoyama: In-situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments. Intermetallics 12, 1265 (2004).

    CAS  Google Scholar 

  13. B. Yang, M.L. Morrison, P.K. Liaw, R.A. Buchanan, G. Wang, C.T. Liu, and M. Denda: Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86, 141904 (2005).

    Google Scholar 

  14. T.C. Hufnagel, T. Jiao, Y. Li, L.Q. Xing, and K.T. Ramesh: Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17, 1441 (2002).

    CAS  Google Scholar 

  15. M.H. Lee and D.J. Sordelet: Evidence for adiabatic heating during fracture of W-reinforced metallic glass composites. Appl. Phys. Lett. 88, 261902 (2006).

    Google Scholar 

  16. C.J. Gilbert, J.W. Ager, V. Schroeder, R.O. Ritchie, J.P. Lloyd, and J.R. Graham: Light emission during fracture of a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 74, 3809 (1999).

    CAS  Google Scholar 

  17. X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, and J.J. Lewandowski: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).

    CAS  Google Scholar 

  18. R.D. Conner, W.L. Johnson, N.E. Paton, and W.D. Nix: Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904 (2003).

    CAS  Google Scholar 

  19. Y. Zhang, W.H. Wang, and A.L. Greer: Making metallic glasses plastic by control of residual stress. Nat. Mater. 5, 857 (2006).

    CAS  Google Scholar 

  20. M. Yamasaki, S. Kagao, and Y. Kawamura: Thermal diffusivity and conductivity of supercooled liquid in Zr41Ti14Cu12Ni10Be23 metallic glass. Appl. Phys. Lett. 84, 4654 (2004).

    Google Scholar 

  21. W.L. Johnson and K. Samwer: A universal criterion for plastic yielding of metallic glasses with a (T /Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    CAS  Google Scholar 

  22. P. Yu, H.Y. Bai, M.B. Tang, and W.L. Wang: Excellent glass-forming ability in simple Cu50Zr50-based alloys. J. Non-Cryst. Solids 351, 1328 (2005).

    CAS  Google Scholar 

  23. C.L. Choy, K.W. Tong, H.K. Wong, and W.P. Leung: Thermal conductivity of amorphous alloys above room temperature. J. Appl. Phys. 70, 4919 (1991).

    CAS  Google Scholar 

  24. M. Yamasaki, S. Kagao, and Y. Kawamura: Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass. Scripta Mater. 53, 63 (2005).

    CAS  Google Scholar 

  25. K.M. Flores and R.H. Dauskardt: Local heating associated with crack tip plasticity in Zr–Ti–Ni–Cu–Be bulk amorphous metals. J. Mater. Res. 14, 638 (1999).

    CAS  Google Scholar 

  26. J. Lu, G. Ravichandran, and W.L. Johnson: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429 (2003).

    CAS  Google Scholar 

  27. R. Huang, Z. Suo, J.H. Prevost, and W.D. Nix: Inhomogeneous deformation in metallic glasses. J. Mech. Phys. Solids 50, 1011 (2002).

    Google Scholar 

  28. N.P. Bailey, J. Schiøtz, and K.W. Jacobsen: Atomistic simulation study of the shear-band deformation in Mg–Cu metallic glasses. Phys. Rev. B 73, 064108 (2006).

    Google Scholar 

  29. Q.K. Li and M. Li: Atomic scale characterization of shear bands in an amorphous metal. Appl. Phys. Lett. 88, 241903 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Greer.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Stelmashenko, N.A., Barber, Z.H. et al. Local temperature rises during mechanical testing of metallic glasses. Journal of Materials Research 22, 419–427 (2007). https://doi.org/10.1557/jmr.2007.0068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0068

Navigation