Skip to main content
Log in

Size-dependent structural phase transition of face-centered-cubic metal nanowires

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Taking Au as an example, we have investigated the epitaxial bain paths of 〈001〉 oriented face-centered-cubic metal nanowires. It demonstrates that there are one stable and one metastable phase, having the lattice constant ratio c/a of about 0.6 and 1.0, respectively. Even without any external stimuli, the surface-tension-induced intrinsic stress in the interior may drive the nanowires to phase transform spontaneously for surface-energy minimization. However, this structural transition depends on the feature sizes of the nanowires. Specifically, only when the cross-section areas are reduced to 4.147 nm2 or so can the surface energy and the intrinsic stress satisfy the thermodynamic and kinetic conditions simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Beckman, E. Johnston-Halperin, Y. Luo, J.E. Green, and J.R. Heath: Bridging dimensions: Demultiplexing ultrahigh-density nanowire circuits. Science 310, 465 (2005).

    Article  CAS  Google Scholar 

  2. Y. Huang, X.F. Duan, Q.Q. Wei, and C.M. Lieber: Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630 (2001).

    Article  CAS  Google Scholar 

  3. Y. Huang, X.F. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, and C.M. Lieber: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).

    Article  CAS  Google Scholar 

  4. H.G. Craighead: Nanoelectromechanical systems. Science 290, 1532 (2000).

    Article  CAS  Google Scholar 

  5. Y. Cui, Q.Q. Wei, H. Park, and C.M. Lieber: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).

    Article  CAS  Google Scholar 

  6. N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P.M. Petroff, and J.R. Heath: Ultrahigh-density nanowire lattices and circuits. Science 300, 112 (2003).

    Article  CAS  Google Scholar 

  7. N. Kouklin: Self-assembled network of carbon nanotubes synthesized by chemical vapor deposition in alumina porous template. Appl. Phys. Lett. 87, 203105 (2005).

    Article  CAS  Google Scholar 

  8. S. Fahlbusch, S. Mazerolle, J.M. Breguet, A. Steinecker, J. Agnus, R. Perez, and J. Michler: Nanomanipulation in a scanning electron microscope. J. Mater. Proc. Technol. 167, 371 (2005).

    Article  CAS  Google Scholar 

  9. S.H. Jeong, H.Y. Hwang, and S.K. Hwang: Carbon nanotubes based on anodic aluminum oxide nano-template. Carbon 42, 2073 (2004).

    Article  CAS  Google Scholar 

  10. K.A. Dick, K. Deppert, M.W. Larsson, T. Martensson, W. Seifert, L.R. Wallenberg, and L. Samuelson: Synthesis of branched “nanotrees” by controlled seeding of multiple branching events. Nat. Mater. 3, 380 (2004).

    Article  CAS  Google Scholar 

  11. S.H. Jeong and K.H. Lee: Fabrication of the aligned and patterned carbon nanotube field emitters using the anodic aluminum oxide nano-template on a Si wafer. Synth. Met. 139, 385 (2003).

    Article  CAS  Google Scholar 

  12. T. Shimizu: Bottom-up synthesis and morphological control of high-axial-ratio nanostructures through molecular self-assembly. Polym. J. 35, 1 (2003).

    Article  Google Scholar 

  13. M. Shimomura and T. Sawadaishi: Bottom-up strategy of materials fabrication: A new trend in nanotechnology of soft materials. Curr. Opin. Coll. Int. Sci. 6, 11 (2001).

    Article  CAS  Google Scholar 

  14. X. Zhang, C. Sun, and N. Fang: Manufacturing at nanoscale: Top-down, bottom-up and system engineering. J. Nanopart. Res. 6, 125 (2004).

    Article  Google Scholar 

  15. T. Nagase, K. Gamo, T. Kubota, and S. Mashiko: Direct fabrication of nano-gap electrodes by focused ion beam etching. Thin Solid Films 499, 279 (2006).

    Article  CAS  Google Scholar 

  16. S. Samukawa: Ultimate top-down etching processes for future nanoscale devices: Advanced neutral-beam etching. Jpn. J. Appl. Phys. Part I 45, 2395 (2006).

    Article  CAS  Google Scholar 

  17. M.H. Velez: Nanowires and 1D arrays fabrication: An overview. Thin Solid Films 495, 51 (2006).

    Article  CAS  Google Scholar 

  18. M. Alexe, C. Harnagea, A. Visinoiu, A. Pignolet, D. Hesse, and U. Gosele: Patterning and switching of nano-size ferroelectric memory cells. Scripta Mater. 44, 1175 (2001).

    Article  CAS  Google Scholar 

  19. R. Dingreville, J.M. Qu, and M. Cherkaoui: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827 (2005).

    Article  CAS  Google Scholar 

  20. K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, and S. Stappert: Higher surface energy of free nanoparticles. Phys. Rev. Lett. 91, 106102 (2003).

    Article  CAS  Google Scholar 

  21. R.C. Cammarata: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1 (1994).

    Article  CAS  Google Scholar 

  22. Y. Kondo and K. Takayanagi: Gold nanobridge stabilized by surface structure. Phys. Rev. Lett. 79, 3455 (1997).

    Article  CAS  Google Scholar 

  23. Y. Kondo and K. Takayanagi: Synthesis and characterization of helical multi-shell gold nanowires. Science 289, 606 (2000).

    Article  CAS  Google Scholar 

  24. Y. Kondo, Q. Ru, and K. Takayanagi: Thickness induced structural phase transition of gold nanofilm. Phys. Rev. Lett. 82, 751 (1999).

    Article  CAS  Google Scholar 

  25. J.K. Diao, K. Gall, and M.L. Dunn: Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656 (2003).

    Article  CAS  Google Scholar 

  26. M.I. Baskes: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992).

    Article  CAS  Google Scholar 

  27. M.I. Baskes and R.A. Johnson: Modified embedded atom potentials for HCP metals. Modell. Simul. Mater. Sci. Eng. 2, 147 (1994).

    Article  CAS  Google Scholar 

  28. K. Schwarz, P. Blaha, and G.K.H Madsen: Electronic-structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  29. M.S. Daw and M.I. Baskes: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  30. M.S. Daw and M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  31. S.M. Foiles, M.I. Baskes, and M.S. Daw: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986).

    CAS  Google Scholar 

  32. J.B. Adams, S.M. Foiles, and W.G. Wolfer: Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the embedded atom method. J. Mater. Res. 4, 102 (1989).

    Article  CAS  Google Scholar 

  33. S.M. Foiles and M.S. Daw: Application of the embedded-atom method to Ni3Al. J. Mater. Res. 2, 5 (1987).

    Article  CAS  Google Scholar 

  34. L. Zhou, X.Q. Wei, and N.G. Zhou: Lattice distortion and thermal stability of nano-crystalline copper. Comp. Mater. Sci. 30, 314 (2004).

    Article  CAS  Google Scholar 

  35. M.F. Horstemeyer, M.I. Baskes, and S.J. Plimpton: Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater. 49, 4363 (2001).

    Article  CAS  Google Scholar 

  36. H.A. Wu: Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod. Comp. Mater. Sci. 31, 287 (2004).

    Article  CAS  Google Scholar 

  37. H.A. Wu: Molecular dynamics study of the mechnics of metal nanowires at finite temperature. Eur. J. Mech. A-Solids 25, 370 (2006).

    Article  Google Scholar 

  38. K. Kadau, P. Entel, and P.S. Lomdahl: Molecular-dynamics study of martensitic transformations in sintered Fe-Ni nanoparticles. Comput. Phys. Commun. 147, 126 (2002).

    Article  Google Scholar 

  39. M.S. Daw and S.M. Foiles: Order-disorder transition of Au and Pt (110) surfaces: The significance of relaxations and vibrations. Phys. Rev. Lett. 59, 2756 (1987).

    Article  CAS  Google Scholar 

  40. M.W. Dodson: Simulation of Au(100) reconstruction by use of the embedded-atom method. Phys. Rev. B 35, 880 (1987).

    Article  CAS  Google Scholar 

  41. S.M. Foiles: Calculation of the surface segregation of Ni–Cu alloys with the use of the embedded-atom method. Phys. Rev. B 32, 7685 (1985).

    Article  CAS  Google Scholar 

  42. M.S. Daw and R.D. Hatcher: Application of the embedded atom method to phonons in transition metals. Solid State Commun. 56, 697 (1985).

    Article  CAS  Google Scholar 

  43. P.M. Marcus and P. Alippi: Tetragonal states from epitaxial strain on metal films. Phys. Rev. B 57, 1971 (1998).

    Article  CAS  Google Scholar 

  44. G.J. Ackland and M.W. Finnis: Semi-empirical calculation of solid surface tensions in body-centred cubic transition metals. Philos. Mag. A 54, 301 (1986).

    Article  CAS  Google Scholar 

  45. J.K. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54, 643 (2006).

    Article  CAS  Google Scholar 

  46. M. Friák, M. Šob, and V. Vitek: Ab initio study of the ideal tensile strength and mechanical stability of transition-metal disilicides. Phys. Rev. B 68, 184101 (2003).

    Article  CAS  Google Scholar 

  47. X.Z. Ji, Y. Tian, and F. Jona: Tetragonal states of palladium II: Experiment. Phys. Rev. B 65, 155404 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. W. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, F., Xu, K.W. Size-dependent structural phase transition of face-centered-cubic metal nanowires. Journal of Materials Research 22, 1299–1305 (2007). https://doi.org/10.1557/jmr.2007.0153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0153

Navigation