Skip to main content
Log in

Densification and microstructure development in spark plasma sintered WC–6 wt% ZrO2 nanocomposites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, we report the results of a transmission electron microscopy investigation on WC–6 wt% ZrO2 nanocomposite, spark plasma sintered at 1300 °C, for varying times of up to 20 min. The primary aim of this work was to understand the evolution of microstructure during such a sintering process. The investigation revealed the presence of nanocrystalline ZrO2 particles (30–50 nm) entrapped within submicron WC grains. In addition, relatively coarser ZrO2 (60–100 nm) particles were observed to be either attached to WC grain boundaries or located at WC triple grain junctions. The evidence of the presence of a small amount of W2 C, supposed to have been formed due to sintering reaction between WC and ZrO2, is presented here. Detailed structural investigation indicated that ZrO2 in the spark plasma sintered nanocomposite adopted an orthorhombic crystal structure, and the possible reasons for o-ZrO2 formation are explained. The increase in kinetics of densification due to the addition of ZrO2 is believed to be caused by the enhanced diffusion kinetics in the presence of nonstoichiometric nanocrystalline ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Basu, J.H. Lee, D.Y. Kim: Development of WC-ZrO2nanocomposites by spark plasma sintering. J. Am. Ceram. Soc. 87, 317 2004

    CAS  Google Scholar 

  2. M. Sternitzke: Review: Structural ceramic nanocomposites. J. Eur. Ceram. Soc. 17, 1061 1997

    CAS  Google Scholar 

  3. R.D. Shull: View point: Nanocrystalline and nano phase materials. Nanostruct. Mater. 2, 213 1993

    Google Scholar 

  4. R.S. Averbek, H.J. Holfer, R. Tao: Processing of nano-grained materials. Mater. Sci. Eng., A 66, 169 1993

    Google Scholar 

  5. S. Komarneni: Nanocomposites. J. Mater. Chem. 2, 1219 1992

    CAS  Google Scholar 

  6. C. Suryanarayana: Nanocrystalline materials. Int. Mater. Rev. 40, 41 1995

    CAS  Google Scholar 

  7. H. Gleiter: Nanostructured materials: State of the art and perspectives. Z. Metallkd. 86, 78 1995

    CAS  Google Scholar 

  8. T. Kusunose, T. Sekino, Y.H. Choa, K. Niihara: Machinability of silicon nitride/boron nitride nanocomposites. J. Am. Ceram. Soc. 85, 2689 2002

    CAS  Google Scholar 

  9. K. Niihara: New design concept of structural ceramics-ceramic nano composites. J. Ceram. Soc. Jpn. The Centennial Memorial Issue 99, 974 1991

    CAS  Google Scholar 

  10. L. Gao, H.Z. Wang, J.S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa, S.D.D.L Torre: SiC–ZrO2(3Y)–Al2O3nanocomposites superfast densified by spark plasma sintering. Nanostruct. Mater. 11, 43 1999

    CAS  Google Scholar 

  11. L. Gao, X. Jin, H. Kawaoka, T. Sekino, K. Niihara: Microstructure and mechanical properties of SiC-mullite nano-composite prepared by spark plasma sintering. Mater. Sci. Eng., A 334, 262 2002

    Google Scholar 

  12. B. Basu, T. Venkateswaran, D.Y. Kim: Microstructure and properties of spark plasma sintered ZrO2–ZrB2nanoceramic composites. J. Am. Ceram. Soc. 89, 2405 2006

    CAS  Google Scholar 

  13. D.S. Perara, M. Tokita, S. Moricca: Comparative study of fabrication of Si3N4/ SiC composites by spark plasma sintering and hot isostatic pressing. J. Eur. Ceram. Soc. 18, 401 1998

    Google Scholar 

  14. L. Gao, H.Z. Wang, J.S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa, S.D.D.L Torre: Mechanical properties and microstructure of nano-SiC–Al2O3composites densified by spark plasma sintering. J. Eur. Ceram. Soc. 19, 609 1999

    CAS  Google Scholar 

  15. G.D. Zhan, J. Kuntz, J. Wan, J. Garay, A.K. Mukherjee: Spark-plasma-sintered BaTiO3/Al2O3nanocomposites. Mater. Sci. Eng., A 356, 443 2003

    Google Scholar 

  16. J.R. Groza: ASM Materials Handbook, Vol. 7 (ASM International, Materials Park, OH, 1998), p. 583

    Google Scholar 

  17. Z.A. Munir, U.A. Tamburini: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci., A 41, 763 2006

    CAS  Google Scholar 

  18. B. Basu, T. Venkateswaran, D. Sarkar: Pressureless sintering and tribological properties of WC-ZrO2composites. J. Eur. Ceram. Soc. 25, 1603 2005

    CAS  Google Scholar 

  19. T. Venkateswaran, D. Sarkar, B. Basu: Tribological properties of WC-ZrO2nanocomposites. J. Am. Ceram. Soc. 88, 691 2005

    CAS  Google Scholar 

  20. R. Suyama, T. Shida, S. Kume: Synthesis of the orthorhombic phase of ZrO2. J. Am. Ceram. Soc. 68, C314 1985

    CAS  Google Scholar 

  21. O. Ohtaka, S. Kume, T. Iwami: Synthesis of the orthorhombic phase of 2Y-ZrO2. J. Am. Ceram. Soc. 71, C164 1988

    CAS  Google Scholar 

  22. D.B. Marshall, M.R. James, J.R. Porter: Structural and mechanical property change in toughened Mg-PSZ at low temperature. J. Am. Ceram. Soc. 72, 218 1989

    CAS  Google Scholar 

  23. S.I. Cha, S.H. Hong: Microstructures of binderless tungsten carbides sintered by spark plasma sintering process. Mater. Sci. Eng., A 356, 381 2003

    Google Scholar 

  24. M. Omori: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287, 183 2000

    Google Scholar 

  25. E.H. Kisi, C.J. Howard, R.J. Hill: Crystal structure of orthorhombic zirconia in partially stabilized zirconia. J. Am. Ceram. Soc. 72, 1757 1989

    CAS  Google Scholar 

  26. R. Guinebretière, Z. Oudjedi, A. Dauger: Orthorhombic zirconia phase in ZrO2–MgAl2O4composite materials. Scripta Mater. 34, 1039 1996

    Google Scholar 

  27. Z. Pedzich: The reliability of particulate composites in the TZP/WC system. J. Eur. Ceram. Soc. 24, 3427 2004

    CAS  Google Scholar 

  28. N. Moskala, W. Pyda: Thermal stability of tungsten carbide in 7 mol% calcia–zirconia solid solution matrix heat treated in argon. J. Eur. Ceram. Soc. (2006, in press)

    Google Scholar 

  29. A.H. Heuer, R. Chaim, V. Lanteri, Review: Phase transformations and microstructural characterization of alloys in the system Y2O3-ZrO2, in Advances in Ceramics Vol. 24A, edited by: S. Somiya, N. Yamamoto, and H. Yanagida

  30. F. Spaepen, D. Turnbull: Negative pressures and melting point depression in oxide coated liquid metal droplets. Scripta Metall. 13, 149 1979

    CAS  Google Scholar 

  31. G. Skandan, C.M. Foster, H. Frase, M.N. Ali, J.C. Parker, H. Hahn: Phase characterization and stabilization due to grain size effects of nanostructured Y2O3. Nanostruct. Mater. 1, 313 1992

    CAS  Google Scholar 

  32. H. Hahn: Microstructure and properties of nanostructured oxides. Nanostruct. Mater. 2, 251 1993

    CAS  Google Scholar 

  33. N.A. Bendeliyani, S.V. Popova, L.F. Veraschagin: New high pressure phases of ZrO2and HfO2. Geokhimya 6, 677 1967

    Google Scholar 

  34. Y.H. Chiao, I.W. Chen: Grain boundary structure and related phenomena. Trans. Jpn. Inst. Metals. Proc. of JIMIS, No. 4 27 (Suppl.), 197 1986

    Google Scholar 

  35. S. Imasato, K. Tokumoto, T. Kitada, S. Sakaguchi: Properties of ultra-fine grain binderless cemented carbide ‘RCCFN’. Int. J. Refract. Met. Hard Mater. 13, 305 1995

    CAS  Google Scholar 

  36. H. Liu, C. Huang, J. Wang, X. Teng: Fabrication and mechanical properties of Al2O3/Ti(C0.7N0.3) nanocomposites. Mater. Res. Bull. 41, 1215 2006

    CAS  Google Scholar 

  37. Holm: Electric Contacts: Theory and Applications, 4th ed. (Springer, New York, 1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikramjit Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, K., Mukhopadhyay, A., Basu, B. et al. Densification and microstructure development in spark plasma sintered WC–6 wt% ZrO2 nanocomposites. Journal of Materials Research 22, 1491–1501 (2007). https://doi.org/10.1557/JMR.2007.0189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0189

Navigation