Skip to main content
Log in

Cluster spin-glasslike behavior in nanoparticles of diluted magnetic semiconductors ZnS:Mn

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Zn1−xMnxS nanoparticles with x = 0.08, 0.16, and 0.32 were synthesized by a coprecipitation reaction between nitrate and sodium sulfide at room temperature in air. The magnetic properties of the Zn1−xMnxS nanoparticles were investigated by alternating-current (ac) susceptibility and direct-current (dc) magnetization measurements. The Mn3O4 phase was observed to exist in the Zn1−xMnxS nanoparticles as x ⩾ 0.16. The actual concentrations (x) of Mn-doped ZnS nanoparticles were determined by energy-dispersive x-ray analysis (EDAX) to be 0.06, 0.11, and 0.20, respectively, corresponding to the initial concentrations x = 0.08, 0.16, and 0.32. All the nanoparticles had the cubic structure and the lattice constant of Zn1−xMnxS phase increased with increasing Mn dopant concentration. For the Zn0.68Mn0.32S nanoparticles, there was evidence for appearance of cluster spin-glasslike behavior, as indicated by two maxima around 15 and 25 K in temperature dependence of ac susceptibility. The frequency independence of the peak at higher temperature is related to the intracluster ferromagnetic (FM) interactions, and the frequency dependence of the peak at lower temperature is associated with the spin glass. All the results revealed that the concentration of Mn2+ in Mn–ZnS and the amount of Mn3O4 were crucial for the cluster spin-glass behavior, which was not found when the real concentration (x) was unequal to 0.20 in Zn1−xMnxS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner R.G. Wilson: Ferromagnetism in Mn-implanted ZnO:Sn single crystal. Appl. Phys. Lett. 82, 239 2003

    Article  CAS  Google Scholar 

  2. P. Balaz, M. Valko, E. Boldizarova J. Briancin: Properties and reactivity of Mn-doped ZnS nanoparticles. Mater. Lett. 57, 188 2002

    Article  CAS  Google Scholar 

  3. W.Q. Peng, S.C. Qu, G.W. Cong, X.Q. Zhang Z.G. Wang: Optical and magnetic properties of ZnS nanoparticles doped with Mn2+. J. Cryst. Growth 282, 179 2005

    Article  CAS  Google Scholar 

  4. T.M. Schuler, R.A. Stern, R. McNorton, S.D. Willoughby, J.M. MacLaren D.L. Ederer: Electronic structure of the diluted magnetic semiconductor Zn0.90Mn0.10S obtained by soft x-ray spectroscopy and first-principles calculations. Phys. Rev. B 72, 045211 2005

    Article  Google Scholar 

  5. R.N. Bhargava, D. Gallagher, X. Hong A. Narmikko: Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416 1994

    Article  CAS  Google Scholar 

  6. I.I. Yu M. Senna: Effects of Mn2+ distribution in Cu-modified ZnS on the concentration quenching of electroluminescence brightness. App. Phys. Lett. 66, 424 1995

    Article  CAS  Google Scholar 

  7. T. Lgarashi, T. Lsabe M. Senna: EPR study of Mn2+ electronic states for the nanosized ZnS:Mn powder modified by acrylic acid. Phys. Rev. B 56, 6444 1997

    Article  Google Scholar 

  8. M. Konishi, T. Isobe M. Senna: Enhancement of photoluminescence of ZnS: Mn nanocrystals by hybridizing with polymerized acrylic acid. J. Lumin. 93, 1 2001

    Article  CAS  Google Scholar 

  9. M. Behboudnia P. Sen: Systematics in the nanoparticle band gap of ZnS and Zn1xMxS (M= Mn, Fe, Ni) for various dopant concentrations. Phys. Rev. B 63, 035316 2001

    Article  Google Scholar 

  10. S.C. Qu, W.H. Zhou, F.Q. Liu, N.F. Chen, Z.G. Wang, H.Y. Pan D.P. Yu: Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution. Appl. Phys. Lett. 80, 3605 2002

    Article  CAS  Google Scholar 

  11. W.H. Brumage, C.R. Yarger C.C. Lin: Effect of the exchange coupling of Mn++ ions on the magnetic susceptibilities of ZnS:MnS crystals. Phys. Rev. 133, A765 1964

    Article  Google Scholar 

  12. H. Hoffmann, H.E. Gumlich, U. Kibmann, U.W. Pohl, H. Waldmann, H.E. Mahnke, B. Spellmeyer, G. Sulzer W. Zeitz: PAD-investigations on MnS cluster formation within the diluted magnetic semiconductor ZnMnS. Phys. B (Amsterdam) 185, 259 1993

    Article  CAS  Google Scholar 

  13. H. Heidrich: Magnetic susceptibility and photomagnetic measurements on ZnS:MnS under low-field conditions with a SQUID magnetometer. Phys. State Sol. A 67, 163 1981

    Article  CAS  Google Scholar 

  14. N. Tsujii, H. Kitazawa G. Kido: Magnetic properties of Mn- and Eu-doped ZnS nanocrystals. J. Appl. Phys. 93, 6957 2003

    Article  CAS  Google Scholar 

  15. H.J. Yuan, X.Q. Yan, Z.X. Zhang, D.F. Liu, Z.P. Zhou, L. Cao, J.X. Wang, Y. Gao, L. Song, L.F. Liu, X.W. Zhao, X.Y. Dou, W.Y. Zhou S.S. Xie: Synthesis, optical, and magnetic properties of Zn1−xMnxS nanowires grown by thermal evaporation. J. Cryst. Growth 271, 403 2004

    Article  CAS  Google Scholar 

  16. J.A. Gaj, R.R. Gakazka M. Nawrocki: Giant exciton Faraday rotation in Cd1−xMnxTe mixed crystals. Solid State Commun. 25, 193 1978

    Article  CAS  Google Scholar 

  17. J.K. Furdyna: Diluted magnetic semiconductors: An interface of semiconductor physics and magnetism (invited). J. Appl. Phys. 53, 7637 1982

    Article  CAS  Google Scholar 

  18. P.M. Shand, A.D. Christianson, T.M. Pekarek, L.S. Martinson, J.W. Schwritzer, I. Miotkowski B.C. Crooker: Spin-glass ordering in the diluted magnetic semiconductor Zn1−xMnxTe. Phys. Rev. B 58, 12876 1998

    Article  CAS  Google Scholar 

  19. J.H. Chung, C.S. Ah D.J. Jang: Formation and distinctive decay times of surface- and lattice-bound Mn2+ impurity luminescence in ZnS nanoparticles. J. Phys. Chem. B 105, 4128 2001

    Article  CAS  Google Scholar 

  20. Y. Wang, N. Herron, K. Moller T. Bein: Three-dimensionally confined diluted magnetic semiconductor cluster: Zn1−xMnxS. Solid State Commun. 77, 33 1991

    Article  CAS  Google Scholar 

  21. B.Y. Geng, L.D. Zhang, G.Z. Wang, T. Xie, Y.D. Zhang G.W. Meng: Synthesis and photoluminescence properties of ZnMnS nanobelts. Appl. Phys. Lett. 84, 2157 2004

    Article  CAS  Google Scholar 

  22. W.F. Pong, R.A. Mayanovic, B.A. Bunker, J.K. Furdyna U. Debska: Extended x-ray-absorption-fine-structure studies of Zn1−xMnxSe alloy structure. Phys. Rev. B 41, 8440 1990

    Article  CAS  Google Scholar 

  23. M.T. Hepworth, J.J. Berns K.A. Sadecki Kinetics of Mn-based Sorbents for Hot Coal Gas Desulfurization., Final Technical Report, DE-FG22-94PC94212-11 (University of Minnesota, Minneapolis, MN, 1997

    Google Scholar 

  24. D.A. Pejakovic, J.L. Manson, J.S. Miller A.J. Epstein: Photoinduced magnetism, dynamics, and cluster glass behavior of a molecule-based magnet. Phys. Rev. Lett. 85, 1994 2000

    Article  CAS  Google Scholar 

  25. R.S. Freitas, L. Ghivelder, F. Damay, F. Dias L.F. Cohen: Magnetic relaxation phenomena and cluster glass properties of La0.7−xYxCa0.3MnO3 manganites. Phys. Rev. B 64, 144404 2001

    Article  Google Scholar 

  26. R.R. Galazka, S. Nagata P.H. Keeson: Paramagnetic-spin-glass antiferromagnetic phase transitions in Cd1−xMnxTe from specific heat and magnetic susceptibility measurements. Phys. Rev. B 22, 3344 1980

    Article  CAS  Google Scholar 

  27. G. Eiselt, J. Kotzler, H. Maletta, D. Stauffer K. Binder: Magnetic “blocking” in very diluted (EuxSr1−x)S: Experiment versus theory. Phys. Rev. B 19, 2664 1979

    Article  CAS  Google Scholar 

  28. R.K. Zheng, H. Liu, X.X. Zhang, V.A.L. Roy A.B. Djurišić: Exchange bias and the origin of magnetism in Mn-doped ZnO tetrapods. Appl. Phys. Lett. 85, 2589 2004

    Article  CAS  Google Scholar 

  29. E. Loudghiri, M. Nogues, M. Taibi A. Belayachi: Preparation and magnetic interactions in Cd1−xZnxCr2Se4 spinel. M. J. Condensed Matter 5, 61 2004

    Google Scholar 

  30. A. Twardowski, H.J.M. Swagten, W.J.M. de Jonge M. Demianiuk: Magnetic behavior of the diluted magnetic semiconductor Zn1−xMnxSe. Phys. Rev. B 36, 7013 1987

    Article  CAS  Google Scholar 

  31. J.J. Hauser J.V. Waszczak: Spin-glass transition in MnO. Phys. Rev. B 30, 5167 1984

    Article  CAS  Google Scholar 

  32. A. Maignan, A. Sundaresan, U.V. Varadaraju B. Ravean: Magnetization relaxation and aging in spin-glass (La,Y)1−x CaxMnO3 (x = 0.25, 0.3 and 0.5) perovskite. J. Magn. Magn. Mater. 184, 83 1998

    Article  CAS  Google Scholar 

  33. J.K. Furdyna: Diluted magnetic semiconductors. J. Appl. Phys. 64, R29 1988

    Article  CAS  Google Scholar 

  34. E. Winkler, R.D. Zysler D. Fiorani: Surface and magnetic interaction effects in Mn3O4 nanoparticles. Phys. Rev. B 70, 174406 2004

    Article  Google Scholar 

Download references

Acknowledgment

The work has been supported by National Natural Science Foundation of China under Grant No. 50332020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZH., Geng, DY., Li, D. et al. Cluster spin-glasslike behavior in nanoparticles of diluted magnetic semiconductors ZnS:Mn. Journal of Materials Research 22, 2376–2383 (2007). https://doi.org/10.1557/jmr.2007.0317

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0317

Navigation