Skip to main content
Log in

Plasticity of bulk metallic glasses improved by controlling the solidification condition

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Different bulk metallic glasses (BMGs) were prepared in ductile Cu47.5Zr47.5Al5, Zr62Cu15.4Ni12.6Al10, and brittle Zr55Ni5Al10Cu30 alloys by controlling solidification conditions. The achieved microstructures were characterized by x-ray diffraction, differential scanning calorimetry, transmission electron microscopy, and synchrotron- based high-energy x-ray diffraction. Monolithic BMGs obtained by high-temperature injection casting are brittle, while BMGs bearing some nanocrystals with the size of 3 to 7 nm and 2 to 4 nm, obtained by low-temperature injection casting and in situ suction casting, respectively, exhibit good plasticity. It indicates that the microstructures of BMGs are closely affected by the solidification conditions. Controlling the solidification conditions could improve the plasticity of BMGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
TABLE I
FIG. 4

Similar content being viewed by others

References

  1. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 1999

    Article  CAS  Google Scholar 

  2. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279 2000

    Article  CAS  Google Scholar 

  3. W.H. Wang, C. Dong C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng., R 44(2–3), 45 2004

    Google Scholar 

  4. A. Peker W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63(17), 2342 1993

    Article  Google Scholar 

  5. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba T. Masumoto: Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy. Mater. Trans., JIM 34(12), 1234 1993

    Article  CAS  Google Scholar 

  6. Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan W.H. Wang: Super plastic bulk metallic glasses at room temperature. Science 315 (5817), 1385 2007

    Article  Google Scholar 

  7. D.H. Bae, S.W. Lee, J.W. Kwon, X.D. Wang S. Yi: Ductile Zr-base bulk metallic glass. Mater. Sci. Eng., A 449–451, 111 2007

    Article  Google Scholar 

  8. J. Schroers W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett. 93(25), 255506 2004

    Article  Google Scholar 

  9. W. Dong, H. Zhang, J. Cai, W. Sun, A. Wang, H. Li Z. Hu: Enhanced plasticity in a Zr-based bulk metallic glass containing nanocrystalline precipitates. J. Alloys Compd. 425(1–2), L1 2006

    Article  CAS  Google Scholar 

  10. K.B. Kim, J. Das, F. Baier, M.B. Tang, W.H. Wang J. Eckert: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88(5), 051911 2006

    Article  Google Scholar 

  11. J.B. Qiang, W. Zhang, G.Q. Xie A. Inoue: Unusual room temperature ductility of a Zr-based bulk metallic glass containing nanoparticles. Appl. Phys. Lett. 90(23), 231907 2007

    Article  Google Scholar 

  12. M.W. Chen, A. Inoue, W. Zhang T. Sakurai: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96(24), 245502 2006

    Article  Google Scholar 

  13. Z.W. Zhu, H.F. Zhang, W.S. Sun, B.Z. Ding Z.Q. Hu: Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zr50. Scripta Mater. 54(6), 1145 2006

    Article  CAS  Google Scholar 

  14. J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang J. Eckert: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94(20), 205501 2005

    Article  Google Scholar 

  15. H. Kato, T. Hirano, A. Matsuo, Y. Kawamura A. Inoue: High strength and good ductility of Zr55Al10Ni5Cu30 bulk glass containing ZrC particles. Scripta Mater. 43(6), 503 2000

    Article  CAS  Google Scholar 

  16. M.L. Saboungi, R. Blomquist, K.J. Volin D.L. Price: Structure of liquid equiatomic potassium-lead alloy: A neutron diffraction experiment. J. Chem. Phys. 87(4), 2278 1987

    Article  CAS  Google Scholar 

  17. W. Hoyer R. Jödicke: Short-range and medium-range order in liquid Au–Ge alloys. J. Non-Cryst. Solids 192–193, 102 1995

    Article  Google Scholar 

  18. V. Simonet, F. Hippert, M. Audier R. Bellissent: Local order in liquids forming quasicrystals and approximant phases. Phys. Rev. B 65(2), 024203 2001

    Article  Google Scholar 

  19. H. Li: Influence of intermediate-range order on glass formation. J. Phys. Chem. B 108(17), 5438 2004

    Article  Google Scholar 

  20. T. Schenk, V. Simonet, D. Holland-Moritz R. Bellissent: Temperature dependence of the chemical short-range order in undercooled and stable Al–Fe–Co liquids. Europhys. Lett. 65(1), 34 2004

    Article  CAS  Google Scholar 

  21. H. Assadi J. Schroers: Crystal nucleation in deeply undercooled melts of bulk metallic glass forming systems. Acta Mater. 50(1), 89 2002

    Article  CAS  Google Scholar 

  22. A. Inoue, T. Shibat T. Zhang: Effect of additional elements on glass transition behavior and glass formation tendency of Zr–Al–Cu–Ni alloys. Mater. Trans., JIM 36(12), 1420 1995

    Article  CAS  Google Scholar 

  23. G.J. Fan, L.F. Fu, Y.D. Wang, Y. Ren, H. Choo, P.K. Liaw, G.Y. Wang N.D. Browning: Uniaxial tensile plastic deformation of a bulk nanocrystalline alloy studied by a high-energy x-ray diffraction technique. Appl. Phys. Lett. 89(10), 101918 2006

    Article  Google Scholar 

  24. G.J. Fan, Y.D. Wang, L.F. Fu, H. Choo, P.K. Liaw, Y. Ren N.D. Browning: Orientation-dependent grain growth in a bulk nanocrystalline alloy during the uniaxial compressive deformation. Appl. Phys. Lett. 88(17), 171914 2006

    Article  Google Scholar 

  25. J.J. Lewandowski A.L. Greer: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5(1), 15 2006

    Article  CAS  Google Scholar 

  26. B. Yang, M.L. Morrison, P.K. Liaw, R.A. Buchanan, G.Y. Wang, C.T. Liu M. Denda: Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86(14), 141904 2005

    Article  Google Scholar 

  27. E. Ma: Nanocrystalline materials—controlling plastic instability. Nat. Mater. 2(1), 7 2003

    Article  CAS  Google Scholar 

  28. Y.J. Huang, J. Shen J.F. Sun: Bulk metallic glasses: smaller is softer. Appl. Phys. Lett. 90(8), 081919 2007

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. H. Wang for discussion and revision of our manuscript and also gratefully acknowledge the financial support from the Ministry of Science and Technology of China (Grant Nos. 2006CB605201, 2005DFA50860), the National Natural Science Foundation of China (Grant No. 50471077). P.K. Liaw would like to thank the United States National Science Foundation International Materials Institute (IMI) and Integrative Graduate Education and Research Training (IGERT) Programs with Dr. C. Huber and Dr. C.J. Van Hartesveldt as the program directors, respectively. The use of the Advanced Photon Source was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. W-31-109-ENG-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.F. Zhang.

Appendix

Appendix

FIG. A1
figure A1

Synchrotron XRD patterns of the HT sample of Cu47.5Zr47.5Al5 alloy, indicating that HT sample is monolithically amorphous.

TABLE AI
figure TabA1

Glass-transition temperature(Tg), onset crystallization temperature(Tx) and crystallization enthalpy(Ecryst.) of the samples of Cu47.5Zr47.5Al5, Zr62Cu15.4Ni12.6Al10, and Zr55Ni5Al10Cu30 prepared by HT, LT, and SC.

FIG. A2
figure A2

Physical XRD patterns of the HT sample of Cu47.5Zr47.5Al5 alloy, converted from the patterns recorded using a two-dimensional image plate detector (Fig. A1).

FIG. A3
figure A3

Nominal stress–strain curves of HT, LT, and SC samples of (a) Zr55Ni5Al10Cu30 and (b) Zr62Cu15.4Ni12.6Al10. They compressed in a constant strain rate of 4 × 10−4 s−1. They show different mechanical behaviors for three different samples, brittleness for HT, and plasticity for LT and SC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Zheng, S., Zhang, H. et al. Plasticity of bulk metallic glasses improved by controlling the solidification condition. Journal of Materials Research 23, 941–948 (2008). https://doi.org/10.1557/jmr.2008.0127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0127

Navigation