Skip to main content
Log in

Experimental method to account for structural compliance in nanoindentation measurements

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The standard Oliver–Pharr nanoindentation analysis tacitly assumes that the specimen is structurally rigid and that it is both semi-infinite and homogeneous. Many specimens violate these assumptions. We show that when the specimen flexes or possesses heterogeneities, such as free edges or interfaces between regions of different properties, artifacts arise in the standard analysis that affect the measurement of hardness and modulus. The origin of these artifacts is a structural compliance (Cs), which adds to the machine compliance (Cm), but unlike the latter, Cs can vary as a function of position within the specimen. We have developed an experimental approach to isolate and remove Cs. The utility of the method is demonstrated using specimens including (i) a silicon beam, which flexes because it is supported only at the ends, (ii) sites near the free edge of a fused silica calibration standard, (iii) the tracheid walls in unembedded loblolly pine (Pinus taeda), and (iv) the polypropylene matrix in a polypropylene–wood composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
TABLE I
FIG. 3
FIG. 4
FIG. 5
FIG. 6
TABLE II
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18
FIG. 19
FIG. 20

Similar content being viewed by others

References

  1. W.C. Oliver G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 1992

    Article  CAS  Google Scholar 

  2. R. Wimmer, B.N. Lucas, T.Y. Tsui W.C. Oliver: Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Sci. Technol. 31(2), 131 1997

    Article  CAS  Google Scholar 

  3. R. Wimmer B.N. Lucas: Comparing mechanical properties of secondary wall and cell corner middle lamella in spruce wood. IAWA J. 18(1), 77 1997

    Article  Google Scholar 

  4. W. Gindl, H.S. Gupta C. Grunwald: Lignification of spruce tracheid secondary cell walls related to longitudinal hardness and modulus of elasticity using nano-indentation. Can. J. Bot. 80(10), 1029 2002

    Article  Google Scholar 

  5. W. Gindl, H.S. Gupta, T. Schoberl, H.C. Lichtenegger P. Fratzl: Mechanical properties of spruce wood cell walls by nanoindentation. Appl. Phys. A: Mater. 79(8), 2069 2004

    Article  CAS  Google Scholar 

  6. W.T.Y. Tze, S. Wang, T.G. Rials, G.M. Pharr S.S. Kelley: Nanoindentation of wood cell walls: continuous stiffness and hardness measurements. Composites Part A: Appl. Sci. 38(3), 945 2007

    Article  Google Scholar 

  7. W. Gindl H.S. Gupta: Cell-wall hardness and Young’s modulus of melamine-modified spruce wood by nano-indentation. Composites Part A: Appl. Sci. 33(8), 1141 2002

    Article  Google Scholar 

  8. W. Gindl, T. Schoberl G. Jeronimidis: The interphase in phenol-formaldehyde and polymeric methylene di-phenyl-di-isocyanate glue lines in wood. Int. J. Adhes. Adhes. 24(4), 279 2004

    Article  CAS  Google Scholar 

  9. J. Konnerth W. Gindl: Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung 60(4), 429 2006

    Article  CAS  Google Scholar 

  10. G.A. Zickler, T. Schoberl O. Paris: Mechanical properties of pyrolysed wood: a nanoindentation study. Philos. Mag. 86(10), 1373 2006

    Article  CAS  Google Scholar 

  11. G.E.L. Franco, D.S. Stone, R.D. Blank: (unpublished work, 2005)

  12. R.B. King: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23(12), 1657 1987

    Article  Google Scholar 

  13. D.S. Stone: Elastic rebound between an indenter and a layered specimen. I. Model.: J. Mater. Res. 13(11), 3207 1998

    CAS  Google Scholar 

  14. D.S. Stone, K.B. Yoder W.D. Sproul: Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation. J. Vac. Sci. Technol., A 9(4), 2543 1991

    Article  CAS  Google Scholar 

  15. K.B. Yoder, D.S. Stone, R.A. Hoffman J.C. Lin: Elastic rebound between an indenter and a layered specimen. II. Using contact stiffness to help ensure reliability of nanoindentation measurements. J. Mater. Res. 13(11), 3214 1998

    Article  CAS  Google Scholar 

  16. Y. Choi, K.J. Van Vliet, L. Ju S. Suresh: Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines. J. Appl. Phys. 94(9), 6050 2003

    Article  CAS  Google Scholar 

  17. Y.M. Soifer, A. Verdyan, M. Kazakevich E. Rabkin: Edge effect during nanoindentation of thin copper films. Mater. Lett. 59(11), 1434 2005

    Article  CAS  Google Scholar 

  18. D. Ge, A.M. Minor, E.A. Stach, J.W. Morris Jr. Size effects in the nanoindentation of silicon at ambient temperature. Philos. Mag. 86(25), 4069 2006

    Article  CAS  Google Scholar 

  19. A. Hodzic, Z.H. Stachurski J.K. Kim: Nano-indentation of polymer-glass interfaces. I. Experimental and mechanical analysis. Polymer 41(18), 6895 2000

    Article  CAS  Google Scholar 

  20. T.D. Downing, R. Kumar, W.M. Cross, L. Kjerengtroen J.J. Kellar: Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation. J. Adhes. Sci. Technol. 14(14), 1801 2000

    Article  CAS  Google Scholar 

  21. S-H. Lee, S. Wang, G.M. Pharr H. Xu: Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis. Composites Part A: Appl. Sci. 38(6), 1517 2007

    Article  CAS  Google Scholar 

  22. A.C. Fischer-Cripps: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Tech. 200(14), 4153 2006

    Article  CAS  Google Scholar 

  23. W.C. Oliver G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 2004

    Article  CAS  Google Scholar 

  24. M. Troyon S. Lafaye: About the importance of introducing a correction factor in the Sneddon relationship for nanoindentation measurements. Philos. Mag. 86(33), 5299 2006

    Article  CAS  Google Scholar 

  25. M.F. Doerner W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601 1986

    Article  Google Scholar 

  26. D.L. Joslin W.C. Oliver: New method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5(1), 123 1990

    Article  CAS  Google Scholar 

  27. W. Gindl T. Schoberl: The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Composites Part A: Appl. Sci. 35(11), 1345 2004

    Article  Google Scholar 

  28. A.E. Slaughter: Design and Fatigue of a Structural Wood–Plastic Composite Washington State University Pullman, WA 2004

    Google Scholar 

  29. R. Hull: Properties of Crystalline Silicon IEE 1999 xxvi+1016

    Google Scholar 

  30. N.A. Stillwell D. Tabor: Elastic recovery of conical indentations. Proc. Phys. Soc. 78(2), 169–179 1961

    Article  Google Scholar 

  31. M. Sakai Y. Nakano: Elastoplastic load–depth hysteresis in pyramidal indentation. J. Mater. Res. 17(8), 2161 2002

    Article  CAS  Google Scholar 

  32. O.L. Warren, A. Dwivedi, T.J. Wyrobek, O.O. Famodu I. Takeuchi: Investigation of machine compliance uniformity for nanoindentation screening of wafer-supported libraries. Rev. Sci. Instrum. 76(6), 62209 2005

    Article  CAS  Google Scholar 

  33. S.E. Grillo, M. Ducarroir, M. Nadal, E. Tournie J.P. Fauriel: Nanoindentation of Si, GaP, GaAs and ZnSe single crystals. J. Phys. D: Appl. Phys. 36(1), 5 2003

    Article  Google Scholar 

  34. J.J. Vlassak W.D. Nix: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42(8), 1223 1994

    Article  Google Scholar 

  35. J.J. Hall: Electronic effects in the elastic constants of n-type silicon. Phys. Rev. 161(3), 756 1967

    Article  CAS  Google Scholar 

  36. S. Cramer, D. Kretschmann, R. Lakes T. Schmidt: Earlywood and latewood elastic properties in loblolly pine. Holzforschung 59(5), 531 2005

    Article  CAS  Google Scholar 

  37. J.E. Jakes, J.C. Hermanson D.S. Stone: Nanoindentation of the interphase region of a wood-reinforced polypropylene composite in Proceedings of the Ninth International Conference on Woodfiber-Plastic Composites, (Madison WI, 21–23 May, 2007), pp. 197–203

  38. C.E. Gerber: Contact Problems for the Elastic Quarter-Plane and for the Quarter Space Stanford University Palo Alto, CA 1968 100

    Google Scholar 

  39. M. Hetenyi: Method of solution for elastic quarter-plane. Trans. ASME Series E, J. Appl. Mech. 27(2), 289 1960

    Article  Google Scholar 

  40. M. Hetenyi: A general solution for the elastic quarter space. Trans. ASME Series E, J. Appl. Mech. 37(1), 70 1970

    Article  Google Scholar 

  41. L.M. Keer, J.C. Lee T. Mura: Contact problem for the elastic quarter space. Int. J. Solids Struct. 20(5), 513 1984

    Article  Google Scholar 

  42. G.Y. Popov: An exact solution of the mixed elasticity problem in a quarter-space. Mech. Solids 38(6), 23 2003

    Google Scholar 

  43. N. Schwarzer, I. Hermann, T. Chudoba F. Richter: Contact Modelling in the Vicinity of an Edge Elsevier San Diego, CA 2001 371–377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.E. Jakes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakes, J., Frihart, C., Beecher, J. et al. Experimental method to account for structural compliance in nanoindentation measurements. Journal of Materials Research 23, 1113–1127 (2008). https://doi.org/10.1557/jmr.2008.0131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0131

Navigation