Skip to main content
Log in

Fast assembly of bio-inspired nanocomposite films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper presents a spin-coating layer-by-layer assembly process to prepare multilayered polyelectrolyte-clay nanocomposites. This method allows for the fast production of films with controlled layered structure. The preparation of a 100-bilayer film with a thickness of about 330 nm needs less than 1 h, which is 20 times faster than conventional dip-coating processes maintaining the same hardness and modulus values. For validation of this technique, nanocomposite films with thicknesses up to 0.5 μm have been created with the common dip self-assembly and with the spin coating layer-by-layer assembly technique from a poly(diallyldimethylammonium)chloride (PDDA) solution and a suspension of a smectite clay mineral (Laponite). Geometrical characteristics (thickness, roughness, and texture) as well as mechanical characteristics (hardness and modulus) of the clay-polyelectrolyte films have been studied. The spin-coated nanocomposite films exhibit clearly improved mechanical properties (hardness 0.4 GPa, elastic modulus 7 GPa) compared to the “pure” polymer film, namely a sixfold increase in hardness and a 17-fold increase in Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I
TABLE II
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE III
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Zh. Tang, N.A. Kotov, S. Magonov B. Ozturk: Nanostructured artificial nacre. Nat. Mater. 6, 413 2003

    Article  Google Scholar 

  2. N.A. Kotov: Ordered layered assemblies of nanoparticles. MRS Bull. 26, 992 2001

    Article  CAS  Google Scholar 

  3. M. Rubner: Material Science: Synthetic sea shell. Nature 423, 925 2003

    Article  CAS  Google Scholar 

  4. F. Barthelat, C.M. Li, C. Comi H.D. Espinosa: Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21, 1977 2006

    Article  CAS  Google Scholar 

  5. F. Barthelat, H. Tang, P.D. Zavattieri, C-M. Li H.D. Espinosa: On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306 2007

    Article  CAS  Google Scholar 

  6. G. Decher J-D. Hong: Buildup of ultrathin multilayer films by a self-assembly process. 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol. Chem. Macromol. Symp. 46, 321 1991

    Article  CAS  Google Scholar 

  7. E. Kleinfeld G. Ferguson: Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 265, 370 1994

    Article  CAS  Google Scholar 

  8. K. Ariga, Y. Lvov, I. Ichinose T. Kunitake: Ultrathin films of inorganic materials (SiO2 nanoparticle, montmorillonite microplate, and molybdenum oxide) prepared by alternate layer-by-layer assembly with organic polyions. Appl. Clay Sci. 15, 137 1999

    Article  CAS  Google Scholar 

  9. S. Deville, E. Saiz, R.K. Nalla A.P. Tomsia: Freezing as a path to build complex composites. Science 311, 515 2006

    Article  CAS  Google Scholar 

  10. F. Bennadji-Gridi, A. Smith J.P. Bonnet: Montmorillonite based artificial nacre prepared via a drying process. Mater. Sci. Eng., B 130, 132 2006

    Article  CAS  Google Scholar 

  11. C.J. Brinker, Y.F. Lu, A. Sellinger H.Y. Fan: Evaporation-induced self assembly: Nanostructures made easy. Adv. Mater. 11, 579 1999

    Article  CAS  Google Scholar 

  12. R.J. Gibbs: Error due to segregation in quantitative clay mineral x-ray diffraction mounting techniques. Am. Mineral. 50, 741 1965

    CAS  Google Scholar 

  13. L. Zevin W. Viaene: Impact of clay particle orientation on quantitative clay diffractometry. Clay Miner. 25, 401 1990

    Article  Google Scholar 

  14. J. Cho, K. Char, H. Kookheon, H. Jong-Dal Ki-B. Lee: Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv. Mater. 13, 1076 2001

    Article  CAS  Google Scholar 

  15. P.A. Chiarelli, M.S. Johal, J.L. Casson, J.B. Roberts, J.M. Robinson H-L. Wang: Controlled fabrication of polyelectrolyte multilayer thin films using spin-assembly. Adv. Mater. 13, 1167 2001

    Article  CAS  Google Scholar 

  16. P.Y. Vuillaume, K. Glinel, A.M. Jonas A. Laschewsky: Ordered polyelectrolyte “multilayers”. 6. Effect of molecular parameters on the formation of hybrid multilayers based on poly(diallylammonium) salts exfoliated clay. Chem. Mater. 15, 3625 2003

    Article  CAS  Google Scholar 

  17. K. Glinel, A. Laschewsky A.M. Jonas: Ordered polyelectrolyte “multilayers”. 3. Complexing clay platelets with polycations of varying structure. Macromolecules 34, 5267 2001

    Article  CAS  Google Scholar 

  18. K. Glinel, A. Laschewsky A.M. Jonas: Ordered polyelectrolyte “multilayers”. 4. Internal structure of clay-based multilayers. J. Phys. Chem. B 106, 11246 2002

    Article  CAS  Google Scholar 

  19. N.A. Kotov, S. Magonov E. Tropsha: Layer-by-layer self-assembly of aluminosilicate-polyelectrolyte composites: Mechanism of deposition, crack resistance, and perspectives for novel membrane materials. Chem. Mater. 10, 886 1998

    Article  CAS  Google Scholar 

  20. N.A. Kotov, T. Haraszti, L. Turi, G. Zavala, R.E. Geer, I. Dekany J.H. Fendler: Mechanism of and defect formation in the self-assembly of polymeric polycation-montmorillonite ultrathin films. J. Am. Chem. Soc. 119, 6821 1997

    Article  CAS  Google Scholar 

  21. W.C. Oliver G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992

    Article  CAS  Google Scholar 

  22. M.F. Doerner W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 1986

    Article  Google Scholar 

  23. R.B. King: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 1987

    Article  Google Scholar 

  24. R. Saha W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 2002

    Article  CAS  Google Scholar 

  25. P.V. Pavoor, A. Bellare, A. Strom, D.H. Yang R.E. Cohen: Mechanical characterization of polyelectrolyte multilayers using quasi-static nanoindentation. Macromolecules 37, 4865 2004

    Article  CAS  Google Scholar 

  26. L. Gan, B. BenNissan A. BenDavid: Modelling and finite element analysis of ultra-microhardness indentation of thin films. Thin Solid Films 291, 362 1996

    Article  Google Scholar 

  27. T.D. Fornes D.R. Paul: Modelling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993 2003

    Article  CAS  Google Scholar 

  28. X.W. Fan, M.K. Park, C.J. Xia R. Advincula: Surface structural characterization and mechanical testing by nanoindentation measurements of hybrid polymer/clay nanostructured multilayer films. J. Mater. Res. 17, 1622 2002

    Article  CAS  Google Scholar 

  29. P. Podsiadlo, Z. Tang, B.S. Shim N.A. Kotov: Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. Nano Lett. 7, 1224 2007

    Article  CAS  Google Scholar 

  30. A. Manceau, D. Chateigner W.P. Gates: Polarized EXAFS, distance-valence least-squares modelling (DVLS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite. Phys. Chem. Miner. 25, 347 1998

    Article  CAS  Google Scholar 

  31. R.G. Avery J.D.F. Ramsay: Colloidal properties of synthetic hectorite clay dispersions. II. Light and small angle neutron scattering. J. Colloid Interface Sci. 109, 448 1986

    Article  CAS  Google Scholar 

  32. B. Van Duffel, R.A. Schoonheydt, C.P.M. Grim F.C. De Schryver: Multilayered clay films: Atomic force microscopy study and modeling. Langmuir 15, 7520 1999

    Article  Google Scholar 

  33. J. Wang, F.G. Shi, T.G. Nieh, B. Zhao, M.R. Brongo, S. Qu T. Rosenmayer: Thickness dependence of elastic modulus and hardness of on-wafer low-k ultrathin polytetrafluoroethylene films. Scripta Mater. 42, 687 2000

    Article  CAS  Google Scholar 

  34. X.Z. Hu B.R. Lawn: A simple indentation stress-strain relation for contacts with spheres on bilayer structures. Thin Solid Films 322, 225 1998

    Article  CAS  Google Scholar 

  35. I.L. Jäger: Comment on: “Effects of the substrate on the determination of thin films mechanical properties by nanoindentation” by Saha and Nix [Acta Mater. 50, 23 2002]. Scripta Mater. 47, 429 2002

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank F. Mornaghini and T. Wermelinger (LNM ETH Zurich) for assistance during the microscopical studies and S. Olliges [Laboratory for Nanometallurgy (LNM) ETH Zurich] for help carrying out the texture measurements. We thank Dr. R.T. Konradi [Laboratory for Surface Science and Technology (LSST) ETH Zurich] who made the ellipsometer available for analysis of the films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Plötze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vertlib, V., Dietiker, M., Plötze, M. et al. Fast assembly of bio-inspired nanocomposite films. Journal of Materials Research 23, 1026–1035 (2008). https://doi.org/10.1557/jmr.2008.0147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0147

Navigation