Skip to main content
Log in

An improved energy method for determining Young’s modulus by instrumented indentation using a Berkovich tip

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We previously proposed a method for estimating Young’s modulus from instrumented nanoindentation data based on a model assuming that the indenter had a spherical-capped Berkovich geometry to take account of the bluntness effect. The method is now further improved by releasing the constraint on the tip shape, allowing it to have a much broader arbitrariness to range from a conical-tipped shape to a flat-ended shape, whereas the spherical-capped shape is just a special case in between. This method requires two parameters to specify a tip geometry, namely, a volume bluntness ratio Vr and a height bluntness ratio hr. A set of functional relationships correlating nominal hardness/reduced elastic modulus ratio (Hn/Er) and elastic work/total work ratio (We/W) were established based on dimensional analysis and finite element simulations, with each relationship specified by a set of Vr and hr. Young’s modulus of an indented material can be estimated from these relationships. The method was shown to be valid when applied to S45C carbon steel and 6061 aluminum alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
TABLE I.
TABLE II.
TABLE III.
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
TABLE IV.
FIG. 10
FIG. 11
TABLE V.
FIG. 12

Similar content being viewed by others

References

  1. J.B. Pethica, R. Hutchings W.C. Oliver: Hardness measurement at penetration depth as small as 20 nm. Philos. Mag. A 48, 593 1983

    Article  CAS  Google Scholar 

  2. J.L. Loubet, J.M. Georges, O. Marchesini G. Meille: Vickers indentation curves of magnesium oxide (MgO). J. Tribol. 106, 43 1984

    Article  CAS  Google Scholar 

  3. D. Newey, M.A. Wilkens H.M. Pollock: An ultra-low-load penetration hardness tester. J. Phys. E.: Sci. Instrum. 15, 119 1982

    Article  CAS  Google Scholar 

  4. W.C. Oliver G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992

    Article  CAS  Google Scholar 

  5. G.M. Pharr, W.C. Oliver F.R. Brotzen: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613 1992

    Article  CAS  Google Scholar 

  6. W.C. Oliver G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 2004

    Article  CAS  Google Scholar 

  7. Y-T. Cheng C.M. Cheng: Scaling, dimension analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 2004

    Article  Google Scholar 

  8. A.C. Fischer-Cripps: Nanoindentation Springer-Verlag New York 2004 39

    Book  Google Scholar 

  9. J. Malzbender G. de With: Indentation load-displacement curve, plastic deformation, and energy. J. Mater. Res. 17, 502 2002

    Article  CAS  Google Scholar 

  10. T.A. Venkatesh, K.J. Van Vliet, A.E. Giannakopoulos S. Suresh: Determination of elasto-plastic properties by instrumented sharp indentation: Guidelines for property extraction. Scr. Mater. 42, 833 2000

    Article  CAS  Google Scholar 

  11. A.E. Giannakopoulos S. Suresh: Determination of elasto-plastic properties by instrumented sharp indentation. Scr. Mater. 40, 1191 1999

    Article  CAS  Google Scholar 

  12. Y-T. Cheng C-M. Cheng: Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73, 614 1998

    Article  CAS  Google Scholar 

  13. C-M. Cheng Y-T. Cheng: On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile. Appl. Phys. Lett. 71, 2623 1997

    Article  CAS  Google Scholar 

  14. W.Y. Ni, Y.T. Cheng, C.M. Chen D.S. Grummon: An energy-based method for analyzing instrumented spherical indentation experiments. J. Mater. Res. 19, 149 2004

    Article  CAS  Google Scholar 

  15. D. Ma, C.W. Ong, S.F. Wong J. He: New method for determining Young’s modulus by non-ideally sharp indentation. J. Mater. Res. 20, 1498 2005

    Article  CAS  Google Scholar 

  16. D. Ma, C.W. Ong S.F. Wong: New relationship between Young’s modulus and nonideally sharp indentation parameters. J. Mater. Res. 19, 2144 2004

    Article  CAS  Google Scholar 

  17. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 2001

    Article  CAS  Google Scholar 

  18. M. Lichinchi, C. Lenardi, J. Haupt R. Vitali: Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312, 240 1998

    Article  CAS  Google Scholar 

  19. A.C. Fischer-Cripps: Use of combined elastic modulus in depth-sensing indentation with a conical indenter. J. Mater. Res. 18, 1043 2003

    Article  CAS  Google Scholar 

  20. ABAQUS Version 6.2 Hibbitt, Karlsson & Sorensen, Inc. Pawtucket, RI 2001

  21. A. Bolshakov G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13, 1049 1998

    Article  CAS  Google Scholar 

  22. J.J. Vlassak W.D. Nix: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223 1994

    Article  Google Scholar 

  23. J.J. Vlassak W.D. Nix: Indentation modulus of elastically anisotropic half spaces. J. Mech. Phys. Solids 67, 1045 1993

    Google Scholar 

  24. J.J. Vlassak, M. Ciavarella, J.R. Barber X. Wang: The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids 51, 1701 2003

    Article  Google Scholar 

  25. J.P. Hirth J. Lothe: Elastic Constants in Theory of Dislocations Krieger Publishing Company Malabar, FL 1982 837

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 10672185, 10432050, and 10572142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Wo Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, D., Ong, C.W. & Zhang, T. An improved energy method for determining Young’s modulus by instrumented indentation using a Berkovich tip. Journal of Materials Research 23, 2106–2115 (2008). https://doi.org/10.1557/JMR.2008.0257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0257

Navigation