Skip to main content
Log in

Thermal conductivity of metallic glassy alloys and its relationship to the glass forming ability and the observed cooling rates

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, we study the cooling behavior of several typical bulk glassy alloys on casing and present the relationship between the thermal conductivity of a glassy alloy and the cooling rate upon mold casting. The cooling rates obtained for Ti-, Zr-, Pd-, and Cu-based bulk glass forming alloys are found to scale with the thermal conductivities of the studied glassy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
TABLE I.
FIG. 4

Similar content being viewed by others

References

  1. A. Inoue: High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans., JIM 36, 866 1995

    Article  CAS  Google Scholar 

  2. A.L. Greer: Metallic glasses. Science 267, 1947 1995

    Article  CAS  Google Scholar 

  3. M.H. Cohen G.S. Grest: Liquid-glass transition, a free-volume approach. Phys. Rev. B 20, 1077 1979

    Article  CAS  Google Scholar 

  4. A. van den Beukel J. Sietsma: The glass transition as a free volume related kinetic phenomenon. Acta Metall. Mater. 38, 383 1990

    Article  Google Scholar 

  5. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999

    Article  CAS  Google Scholar 

  6. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000

    Article  CAS  Google Scholar 

  7. J.F. Loffler: Bulk metallic glasses. Intermetallics 11, 529 2003

    Article  CAS  Google Scholar 

  8. W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A. Carmichael Jr. J.L. Wright: Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 10, 1157 2002

    Article  CAS  Google Scholar 

  9. S. Pang, T. Zhang, K. Asami A. Inoue: Bulk glassy Ni–(Co–)Nb–Ti–Zr alloys with high corrosion resistance and high strength. Mater. Sci. Eng., A 375, 368 2004

    Article  Google Scholar 

  10. G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, Y. Yokoyama, M.L. Benson, B.A. Green, M.J. Kirkham, S.A. White, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu C.R. Brooks: Fatigue behavior of bulk-metallic glasses. Intermetallics 12, 885 2004

    Article  CAS  Google Scholar 

  11. D.V. Louzguine-Luzgin A. Inoue: Nano-devitrification of glassy alloys. J. Nanosci. Nanotechnol. 5, 999 2005

    Article  CAS  Google Scholar 

  12. T. Egami: Nano-glass mechanism of bulk metallic glass formation. Mater. Trans. 43, 510 2002

    Article  CAS  Google Scholar 

  13. P.J. Desré: On the effect of the number of components on glass-forming ability of alloys from the liquid state: Application to the new generation of multicomponent bulk glasses. Mater. Trans., JIM 38, 583 1997

    Article  Google Scholar 

  14. D. Turnbull M.H. Cohen: Free-volume model of the amorphous phase: Glass transition. J. Chem. Phys. 34, 120 1961

    Article  CAS  Google Scholar 

  15. H.S. Chen: Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metall. 22, 1505 1974

    Article  CAS  Google Scholar 

  16. A.R. Yavari D. Negri: Effect of concentration gradients on nanostructure development during primary crystallization of soft-magnetic iron-based amorphous alloys and its modeling. Nanostruct. Mater. 8, 969 1997

    Article  CAS  Google Scholar 

  17. Z.P. Lu C.T. Liu: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 2002

    Article  CAS  Google Scholar 

  18. N. Nishiyama A. Inoue: Direct comparison between critical cooling rate and some quantitative parameters for evaluation of glass-forming ability in Pd–Cu–Ni–P alloys. Mater. Trans. 43, 1913 2002

    Article  CAS  Google Scholar 

  19. D.V. Louzguine-Luzgin, A.D. Setyawan, H. Kato A. Inoue: Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys. Appl. Phys. Lett. 88, 251902 2006

    Article  Google Scholar 

  20. D.V. Louzguine-Luzgin, A.D. Setyawan, H. Kato A. Inoue: Thermal conductivity of an alloy in relation to the observed cooling rate and glass-forming ability. Philos. Mag. 87, 1845 2007

    Article  CAS  Google Scholar 

  21. Y.K. Kuo, K.M. Sivakumar, C.A. Su, C.N. Ku, S.T. Lin, A.B. Kaiser, J.B. Qiang, Q. Wang C. Dong: Measurement of low-temperature transport properties of Cu-based Cu-Zr-Ti bulk metallic glass. Phys. Rev. B 74, 014208 2006

    Article  Google Scholar 

  22. M. Yamasaki, S. Kagao Y. Kawamura: Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass. Scr. Mater. 53, 63 2005

    Article  CAS  Google Scholar 

  23. U. Harms, T.D. Shen R.B. Schwarz: Thermal conductivity of Pd40Ni40–xCuxP20 metallic glasses. Scr. Mater. 47, 411 2002

    Article  CAS  Google Scholar 

  24. Z. Zhou, C. Uher, D. Xu, W.L. Johnson, W. Gannon M.C. Aronson: On the existence of Einstein oscillators and thermal conductivity in bulk metallic glass. Appl. Phys. Lett. 89, 031924 2006

    Article  Google Scholar 

  25. H. Choi-Yim, D. Xu W.L. Johnson: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X X = B,Fe,Cu alloy systems. Appl. Phys. Lett. 82, 1030 2003

    Article  CAS  Google Scholar 

  26. R. Arroyave, T.W. Eagar L. Kaufman: Thermodynamic assessment of the Cu–Ti–Zr system. J. Alloys Compd. 351, 158 2003

    Article  CAS  Google Scholar 

  27. S. Gulbrandsen-Dahl, J.K. Solberg O. Grong: Digital photocalorimetric measurements of cooling rates in chill block melt spinning of Mm(NiCoMnAl)5 hydride forming alloy. Mater. Sci. Technol. 17, 1556 2001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Research and Development Project on Advanced Metallic Glasses, Inorganic Materials and Joining Technology as well as by Grant-in-Aid “Priority Area on Science and Technology of Microwave-Induced, Thermally Non-Equilibrium Reaction Field” N: 18070001 from Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Louzguine-Luzgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louzguine-Luzgin, D.V., Saito, T., Saida, J. et al. Thermal conductivity of metallic glassy alloys and its relationship to the glass forming ability and the observed cooling rates. Journal of Materials Research 23, 2283–2287 (2008). https://doi.org/10.1557/JMR.2008.0286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0286

Navigation