Skip to main content
Log in

Nanoindentation hardness, Young’s modulus, and creep behavior of organic–inorganic silica-based sol-gel thin films on copper

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, the mechanical properties and creep behavior of hybrid sol-gel silica-based coatings on copper substrates were investigated. Sol-gel processing was used to synthesize the organically modified silanes using mixtures of tetraethoxysilane and vinyltrimethoxysilane or glycidoxypropyltrimethoxysilane precursors. The mechanical and creep properties of the coatings were assessed using nanoindentation. The link between film structure and creep behavior from nanoindentation experiments was examined, and simple mechanical models were used to extract Young’s modulus and viscosity from fits to creep data. It is shown that the creep response of the coatings was influenced dramatically by the chain length and amount of organic substituent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I.
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
TABLE II.
FIG. 9

Similar content being viewed by others

References

  1. J.D. Mackenzie: Structures and properties of ormosils. J. Sol-Gel Sci. Technol. 2, 81 1994

    Article  CAS  Google Scholar 

  2. H. Schmidt: New type of non-crystalline solids between inorganic and organic materials. J. Non-Cryst. Solids 73, 681 1985

    Article  CAS  Google Scholar 

  3. J. Wen G.L. Wilkes: Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mater. 8, 1667 1996

    Article  CAS  Google Scholar 

  4. J. Wen, V.J. Vasudevan G.L. Wilkes: Abrasion resistant inorganic/organic coating materials prepared by the sol-gel method. J. Sol-Gel Sci. Technol. 5, 115 1995

    Article  CAS  Google Scholar 

  5. K-H. Haas H. Wolter: Synthesis, properties and applications of inorganic–organic copolymers (ORMOCER®s). Curr. Opin. Solid State Mater. Sci. 4, 571 1999

    Article  CAS  Google Scholar 

  6. T.L. Metroke, R.L. Parkhill E.T. Knobbe: Passivation of metal alloys using sol-gel-derived materials—A review. Prog. Org. Coat. 41, 233 2001

    Article  CAS  Google Scholar 

  7. C. Sanchez, B. Lebeau, F. Ribot M. In: Molecular design of sol-gel derived hybrid organic–inorganic nanocomposites. J. Sol-Gel Sci. Technol. 19, 31 2000

    Article  CAS  Google Scholar 

  8. J.D. Mackenzie E. Bescher: Some factors governing the coating of organic polymers by sol-gel derived hybrid materials. J. Sol-Gel Sci. Technol. 27, 7 2003

    Article  CAS  Google Scholar 

  9. B.A. Latella, M. Ignat, C.J. Barbé, D.J. Cassidy J.R. Bartlett: Adhesion behaviour of organically-modified silicate coatings on stainless steel. J. Sol-Gel Sci. Technol. 26, 765 2003

    Article  CAS  Google Scholar 

  10. B.A. Latella, M. Ignat, C.J. Barbé, D.J. Cassidy H. Li: Cracking and decohesion of sol-gel hybrid coatings on metallic substrates. J. Sol-Gel Sci. Technol. 31, 143 2004

    Article  CAS  Google Scholar 

  11. A.J. Atanacio, B.A. Latella, C.J. Barbé M.V. Swain: Mechanical properties and adhesion characteristics of hybrid sol–gel thin films. Surf. Coat. Technol. 192, 354 2005

    Article  CAS  Google Scholar 

  12. M. Ignat, T. Marieb, H. Fujimoto P.A. Flinn: Mechanical behaviour of submicron multilayers submitted to microtensile experiments. Thin Solid Films 353, 201 1999

    Article  CAS  Google Scholar 

  13. B.A. Latella, B.K. Gan, K.E. Davies, D.R. McKenzie D.G. McCulloch: Titanium nitride/vanadium nitride alloy coatings: Mechanical properties and adhesion characteristics. Surf. Coat. Technol. 200, 3605 2006

    Article  CAS  Google Scholar 

  14. B.A. Latella, G. Triani, Z. Zhang, K.T. Short, J.R. Bartlett M. Ignat: Enhanced adhesion of atomic layer deposited titania on polycarbonate substrates. Thin Solid Films 515, 3138 2007

    Article  CAS  Google Scholar 

  15. M. Sakai: Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter. Philos. Mag. A 82, 1841 2002

    Article  CAS  Google Scholar 

  16. S. Yang, Y-W. Zhang K.Y. Zeng: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655 2004

    Article  CAS  Google Scholar 

  17. C.Y. Zhang, Y.W. Zhang K.Y. Zeng: Extracting the mechanical properties of a viscoelastic polymeric film on a hard elastic substrate. J. Mater. Res. 19, 3053 2004

    Article  CAS  Google Scholar 

  18. B. Beake: Modelling indentation creep of polymers: A phenomenological approach. J. Phys. D: Appl. Phys. 39, 4478 2006

    Article  CAS  Google Scholar 

  19. M.L. Oyen: Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 55, 3633 2007

    Article  CAS  Google Scholar 

  20. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero A.M. Baro: WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 2007

    Article  CAS  Google Scholar 

  21. J.S. Field M.V. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 1993

    Article  CAS  Google Scholar 

  22. Y-G. Jung, B.R. Lawn, M. Martyniuk, H. Huang X.Z. Hu: Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 19, 3076 2004

    Article  CAS  Google Scholar 

  23. D.R. Bland: Theory of Linear Viscoelasticity Pergamon Oxford, UK 1960

    Google Scholar 

  24. A.C. Fischer-Cripps: A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng., A 385, 74 2004

    Article  Google Scholar 

  25. E.H. Lee J.R.M. Radok: The contact problems for viscoelastic bodies. J. Appl. Mech. 27, 438 1960

    Article  Google Scholar 

  26. M.V.R. Kumar R. Narasimhan: Analysis of spherical indentation of linear viscoelastic materials. Curr. Sci. 87, 1088 2004

    Google Scholar 

  27. P. Berthoud, C.G. Sell J-M. Hiver: Elastic-plastic indentation creep of glassy poly(methyl methacrylate) and polystyrene: Characterization using uniaxial compression and indentation tests. J. Phys. D: Appl. Phys. 32, 2923 1999

    Article  CAS  Google Scholar 

  28. T. Chudoba F. Richter: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Technol. 148, 191 2001

    Article  CAS  Google Scholar 

  29. P. Innocenzi, G. Brusatin F. Babonneau: Competitive polymerization between organic and inorganic networks in hybrid materials. Chem. Mater. 12, 3726 2000

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Thanks to G. Smith for assistance with polishing the Cu substrates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno A. Latella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latella, B.A., Gan, B.K., Barbé, C.J. et al. Nanoindentation hardness, Young’s modulus, and creep behavior of organic–inorganic silica-based sol-gel thin films on copper. Journal of Materials Research 23, 2357–2365 (2008). https://doi.org/10.1557/jmr.2008.0315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0315

Navigation