Skip to main content
Log in

Nanoindentation near the edge

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load–depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as functions of position. Previously, we showed that the artifacts can be understood in terms of a structural compliance, Cs, which is independent of the size of the indent. In the present work, the utility of the SYS (Stone, Yoder, Sproul) correlation is demonstrated in its ability to remove the artifacts caused by Cs. We investigate properties: (i) near the surface of an extruded polymethyl methacrylate rod tested in cross section, (ii) of compound corner middle lamellae of loblolly pine (Pinus taeda) surrounded by relatively stiff wood cell walls, (iii) of wood cell walls embedded in a polypropylene matrix with some poorly bonded wood–matrix interfaces, (iv) of AlB2 particles embedded in an aluminum matrix, and (v) of silicon-on-insulator thin film on substrate near the free edge of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).

    Article  CAS  Google Scholar 

  2. I.N. Sneddon: Relation between load and penetration in axisym-metric Boussinesq problem for punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  3. A. Bolshakov and G.M. Pharr: Inaccuracies in Sneddon’s solution for elastic indentation by a rigid cone and their implications for nanoindentation data analysis, in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J.E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 189.

    CAS  Google Scholar 

  4. M. Troyon and S. Lafaye: About the importance of introducing a correction factor in the Sneddon relationship for nanoindentation measurements. Philos. Mag. 86(33–35), 5299 (2006).

    Article  CAS  Google Scholar 

  5. J.E. Jakes, C.R. Frihart, J.F. Beecher, R.J. Moon, and D.S. Stone: Experimental method to account for structural compliance in nanoindentation measurements. J. Mater. Res. 23(4), 1113 (2008).

    Article  CAS  Google Scholar 

  6. R.B. King: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23(12), 1657 (1987).

    Article  Google Scholar 

  7. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601 (1986).

    Article  Google Scholar 

  8. D.S. Stone: Elastic rebound between an indenter and a layered specimen. I. Model. J. Mater. Res. 13(11), 3207 (1998).

    Article  CAS  Google Scholar 

  9. K.B. Yoder, D.S. Stone, R.A. Hoffman, and J.C. Lin: Elastic rebound between an indenter and a layered specimen. II. Using contact stiffness to help ensure reliability of nanoindentation measurements. J. Mater. Res. 13(11), 3214 (1998).

    Article  CAS  Google Scholar 

  10. A.C. Fischer-Cripps: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol. 200(14–15), 4153 (2006).

    Article  CAS  Google Scholar 

  11. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).

    Article  CAS  Google Scholar 

  12. Y-T. Cheng and C-M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44(4–5), 91 (2004).

    Article  Google Scholar 

  13. A.A. Elmustafa, S. Kose, and D.S. Stone: The strain-rate sensitivity of the hardness in indentation creep. J. Mater. Res. 22(4), 926 (2007).

    Article  CAS  Google Scholar 

  14. D.S. Stone, K.B. Yoder, and W.D. Sproul: Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation. J. Vac. Sci. Technol. A 9(4), 2543 (1991).

    Article  CAS  Google Scholar 

  15. D.L. Joslin and W.C. Oliver: New method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5(1), 123 (1990).

    Article  CAS  Google Scholar 

  16. M. Sakai and Y. Nakano: Elastoplastic load-depth hysteresis in pyramidal indentation. J. Mater. Res. 17(8), 2161 (2002).

    Article  CAS  Google Scholar 

  17. N.A. Stilwell and D. Tabor: Elastic recovery of conical indentations. Proc. Phys. Soc. 78, 169 (1961).

    Article  Google Scholar 

  18. N.B. Duque, Z.H. Melgarejo, and O.M. Suarez: Functionally graded aluminum matrix composites produced by centrifugal casting. Mater. Charact. 55(2), 167 (2005).

    Article  CAS  Google Scholar 

  19. Z.H. Melgarejo, O.M. Suarez, and K. Sridharan: Wear resistance of a functionally-graded aluminum matrix composite. Scr. Mater., 55(1 Spec), 95 (2006).

    Article  CAS  Google Scholar 

  20. Z.H. Melgarejo, O.M. Suarez, and K. Sridharan: Microstructure and properties of functionally graded Al–Mg–B composites fabricated by centrifugal casting. Compos. Part A: Appl. Sci. Manuf. 39(7), 1150 (2008).

    Article  Google Scholar 

  21. N. Miller, K. Tapily, H. Baumgart, G.K. Cellar, F. Brunier, and A.A. Elmustafa: Nanomechanical properties of strained silicon-on-insulator (SOI) films epitaxially grown on Si1–xGex and layer transferred wafer bonding, in Surface and Interfacial Nano-mechanics, edited by R.F. Cook, W. Ducker, I. Szlufarska, and R.F. Antrim (Mater. Res. Soc. Symp. Proc. 1021E, Warrendale, PA, 2007), 1021–HH05.

    Google Scholar 

  22. R. Wimmer, B.N. Lucas, T.Y. Tsui, and W.C. Oliver: Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Sci. Technol. 31(2), 131 (1997).

    Article  CAS  Google Scholar 

  23. C.E. Gerber: Contact Problems for the Elastic Quarter-Plane and for the Quarter Space (Stanford University, Palo Alto, CA, 1968), p. 100.

    Google Scholar 

  24. S.S. Chiang, D.B. Marshall, and A.G. Evans: The response of solids to elastic/plastic indentation. I. Stresses and residual stresses. J. Appl. Phys. 53(1), 298 (1982).

    Article  CAS  Google Scholar 

  25. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985), p. 452.

    Book  Google Scholar 

  26. C. Deppisch, G. Liu, J.K. Shang, and J. Economy: Processing and mechanical properties of AlB2 flake reinforced Al-alloy composites. Mater. Sci. Eng., A A225(1–2), 153 (1997).

    Article  CAS  Google Scholar 

  27. K. Liu, X.L. Zhou, X-R. Chen, and W-J. Zhu: Structural and elastic properties of AlB2 compound via first-principles calculations. Physica B (Amsterdam) 388(1–2), 213 (2007).

    Article  CAS  Google Scholar 

  28. J.J. Vlassak and W.D. Nix: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42(8), 1223 (1994).

    Article  Google Scholar 

  29. M. Hetenyi: Method of solution for elastic quarter-plane. ASME Trans. J. Appl. Mech. Ser. E, J. Appl. Mech. 27(2), 289 (1960).

    Article  Google Scholar 

  30. M. Hetenyi: A general solution for the elastic quarter space. Trans. ASME Ser. E., J. Appl. Mech. 37(1), 70 (1970).

    Article  Google Scholar 

  31. L.M. Keer, J.C. Lee, and T. Mura: Hetenyi’s elastic quarter space problem revisited. Int. J. Solids Struct. 19(6), 497 (1983).

    Article  Google Scholar 

  32. L.M. Keer, J.C. Lee, and T. Mura: A contact problem for the elastic quarter space. Int. J. Solids Struct. 20(5), 513 (1984).

    Article  Google Scholar 

  33. G.Y. Popov: An exact solution of the mixed elasticity problem in a quarter-space. Mech. Solids 38(6), 23 (2003).

    Google Scholar 

  34. N. Schwarzer, I. Hermann, T. Chudoba, and F. Richter: Contact modelling in the vicinity of an edge. Surf. Coat. Techol. 146–147, 371 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakes, J.E., Frihart, C.R., Beecher, J.F. et al. Nanoindentation near the edge. Journal of Materials Research 24, 1016–1031 (2009). https://doi.org/10.1557/jmr.2009.0076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0076

Navigation