Skip to main content
Log in

Room temperature creep of fine-grained pure Mg: A direct comparison between nanoindentation and uniaxial tension

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation creep and uniaxial tension were conducted on pure Mg with a grain size of about 2 μm at room temperature and the data were directly compared. Despite the differences in stress state, the two sets of data were found to match remarkably well with each other. An apparent stress exponent value of 4 was obtained and the deformation mechanism was discussed in light of dislocation slips and twinning in anisotropic Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C.M. Li: Impression creep and other localized tests. Mater. Sci. Eng., A 322, 23 (2002).

    Article  Google Scholar 

  2. H. Li and A.H.W. Ngan: Size effects of nanoindentation creep. J. Mater. Res. 19, 513 (2004).

    Article  CAS  Google Scholar 

  3. D.S. Tabor: The Hardness of Metals (Clarendon Press, Oxford, UK, 1951), pp. 103–107.

    Google Scholar 

  4. R. Mahmudi, A. Rezaee-Bazzaz, and H.R. Banaie-Fard: Investigation of stress exponent in the room-temperature creep of Sn-40Pb-2.5Sb solder alloy. J. Alloys Compd. 429, 192 (2007).

    Article  CAS  Google Scholar 

  5. R. Goodall and T.W. Clyne: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54, 5489 (2006).

    Article  CAS  Google Scholar 

  6. W.H. Poisl, W.C. Oliver, and B.D. Fabes: The relationship between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 10, 2024 (1995).

    Article  CAS  Google Scholar 

  7. W.K. Miller: Creep of die cast AZ91 magnesium at room temperature and low stress. Metall. Trans. 22, 873 (1991).

    Article  Google Scholar 

  8. J. Koike: Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metall. Mater. Trans. A 36, 1689 (2005).

    Article  Google Scholar 

  9. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama: Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523K. Mater. Trans. 44, 445 (2003).

    Article  CAS  Google Scholar 

  10. S. Kamado, J. Koike, K. Kondoh, and Y. Kawamura: Magnesium research trend in Japan. Mater. Sci. Forum 419, 21 (2003).

    Article  Google Scholar 

  11. H. Somekawa and T. Mukai: Effect of grain refinement on fracture toughness in extruded pure magnesium. Scr. Mater. 53, 1059 (2005).

    Article  CAS  Google Scholar 

  12. R. Hill: The Mathematical Theory of Plasticity (Clarendon Press, Oxford, UK, 1950), p. 99.

    Google Scholar 

  13. M. Mabuchi, K. Kubota, and K. Higashi: Tensile strength, ductility and fracture of magnesium-silicon alloys. J. Mater. Sci. 31, 1529 (1996).

    Article  CAS  Google Scholar 

  14. D.M. Huang, Y.G. Chen, Y.B. Tang, H.M. Liu, and G. Niu: Indentation creep behavior of AE42 and Ca-containing AE41 alloys. Mater. Lett. 61, 1015 (2007).

    Article  CAS  Google Scholar 

  15. J. Weertman: Dislocation climb theory of steady-state creep. ASM Trans. 61, 681 (1968).

    CAS  Google Scholar 

  16. V.N. Chuvil’deev, T.G. Nieh, M.Y. Gryaznov, V.I.A.N. Sysoev, and V.I. Kopylov: Low-temperature superplasticity and internal friction in microcrystalline Mg alloys processed by ECAP. Scr. Mater. 50, 861 (2004).

    Article  Google Scholar 

  17. M.R. Barnett: Twinning and the ductility of magnesium alloys: Part I: “Tension twins. Mater. Sci. Eng., A 464, 1 (2007).

    Article  Google Scholar 

  18. Y. Chino, K. Kimura, and M. Mabuchi: Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy. Mater. Sci. Eng., A 486, 481 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Nieha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C.L., Mukai, T. & Nieha, T.G. Room temperature creep of fine-grained pure Mg: A direct comparison between nanoindentation and uniaxial tension. Journal of Materials Research 24, 1615–1618 (2009). https://doi.org/10.1557/jmr.2009.0187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0187

Navigation