Skip to main content
Log in

Impedance spectroscopy analysis of zirconia:8 mol% yttria solid electrolytes with graphite pore former

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Porous ZrO2:8 mol% Y2O3 sintered ceramics were prepared by adding graphite powder as pore former before sintering. The thermal elimination of graphite was evaluated by thermogravimetric analysis. Impedance spectroscopy analysis was carried out in the 5 Hz to 13 MHz frequency range in specimens sintered with and without pore former. The deconvolution of the impedance diagrams, [Z″(ω) × Z′(ω)] and [Z″(ω) × log f], and the numerical residuals resulting from the subtraction of normalized impedance spectroscopy diagrams measured in specimens with and without pore formers were evaluated. A comparison of the impedance diagrams of samples sintered with and without pore former shows evidence of a modification of the electrical response caused by pores. The results show the unequivocal ability of the impedance spectroscopy technique to gauge microstructural modification caused by the presence of pores in ionic conducting solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Guo and R. Waser: Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria. ?Prog. Mater. Sci. 51, 151 (2006).

    Article  CAS  Google Scholar 

  2. M.J. Verkerk, B.J. Middelhuis, and A.J. Burggraaf: Effect of grain-boundaries on the conductivity of high-purity ZrO2–Y2O3 ceramics. Solid State Ionics 6, 159 (1982).

    Article  CAS  Google Scholar 

  3. X. Guo: Physical origin of the intrinsic grain-boundary resistivity of stabilized-zirconia—Role of the space-charge layers. Solid State Ionics 81, 235 (1995).

    Article  CAS  Google Scholar 

  4. X. Guo: Solute segregations at the space-charge layers of stabilized zirconia: An opportunity for ameliorating conductivity. J. Eur. Ceram. Soc. 16, 575 (1996).

    Article  CAS  Google Scholar 

  5. D. Bingham, P.W. Tasker, and A.N. Cormack: Simulated grain-boundary structures and ionic-conductivity in tetragonal zirconia. Philos. Mag. A 60, 1 (1989).

    Article  CAS  Google Scholar 

  6. J.E. Bauerle: Study of solid electrolyte polarization by a complex admittance method. J. Phys. Chem. Solids 30, 2657 (1969).

    Article  CAS  Google Scholar 

  7. E. Barsoukov and J.R. Macdonald: Impedance Spectroscopy, Theory, Experiment, and Applications, 2nd ed. (John Wiley & Sons, Hoboken, NJ, 2005).

    Book  Google Scholar 

  8. M. Kleitz, H. Bernard, E. Fernandez, and E. Schouler: Impedance spectroscopy and electrical resistance measurements on stabilized zirconia, in Advances in Ceramics, Vol. 3, Science and Technology of Zirconia, edited by A.H. Heuer and L.W. Hobbs (The American Ceramic Society, Columbus, OH, 1981), p. 310.

    Google Scholar 

  9. J. Fleig and J. Maier: A finite element study on the grain boundary impedance of different microstructures. J. Electrochem. Soc. 145, 2081 (1998).

    Article  CAS  Google Scholar 

  10. J. Fleig and J. Maier: Finite-element calculations on the impedance of electroceramics with highly resistive grain boundaries: I, Laterally inhomogeneous grain boundaries. J. Am. Ceram. Soc. 82, 3485 (1999).

    Article  CAS  Google Scholar 

  11. J. Fleig: The influence of non-ideal microstructures on the analysis of grain boundary impedances. Solid State Ionics 131, 117 (2000).

    Article  CAS  Google Scholar 

  12. J. Fleig: The grain boundary impedance of random microstructures: Numerical simulations and implications for the analysis of experimental data. Solid State Ionics 150, 181 (2002).

    Article  CAS  Google Scholar 

  13. G.J. Brug, A.L.G. Van der Eeden, M. Sluyters-Rehbach, and J.H. Sluyters: The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. 176, 275 (1984).

    Article  CAS  Google Scholar 

  14. S.P.S. Badwal: Grain-boundary resistivity in zirconia-based materials: Effect of sintering temperatures and impurities. Solid State Ionics 76, 67 (1995).

    Article  CAS  Google Scholar 

  15. R.W. Rice: Porosity of Ceramics (Marcel Dekker, New York, 1998).

    Google Scholar 

  16. R.W. Rice: Ceramic Fabrication Technology (Marcel Dekker, New York, 2003).

    Google Scholar 

  17. J.S. Woyansky, C.E. Scott, and W.P. Minnear: Processing of porous ceramics. Am. Ceram. Soc. Bull. 71, 1674 (1992).

    Google Scholar 

  18. L. Dessemond, R. Muccillo, M. Henault, and M. Kleitz: Electric conduction-blocking effects of voids and second phases in stabilized zirconia. Appl. Phys. A 57, 57 (1993).

    Article  Google Scholar 

  19. M. Kleitz, C. Pescher, and L. Dessemond: Impedance spectroscopy of microstructure defects and crack characterization, in Science and Technology of Zirconia V, edited by S.P.S. Badwal, M.J. Bannister, and R.H.J. Hannink (Technomic Publishing, Lancaster, PA, 1993), p. 593.

    Google Scholar 

  20. E.N.S. Muccillo and M. Kleitz: Impedance spectroscopy of Mg-partially stabilized zirconia and cubic phase decomposition. J. Eur. Ceram. Soc. 16, 453 (1996).

    Article  CAS  Google Scholar 

  21. F.C. Fonseca and R. Muccillo: Impedance spectroscopy analysis of percolation in (yttria-stabilized zirconia)-yttria ceramic composites. Solid State Ionics 166, 157 (2004).

    Article  CAS  Google Scholar 

  22. M. Vijayakumar and O. Bohnke: The current detour effect observed on materials with random microstructure: Experimental evidence from Li3xLa2/3–xTiO3 studied by impedance spectroscopy. J. Eur. Ceram. Soc. 26, 3221 (2006).

    Article  CAS  Google Scholar 

  23. M. Kleitz and J.H. Kennedy: Resolution of multicomponent impedance diagrams, in Fast Ion Transport in Solids, edited by P. Vashishta, J.N. Mundy, and G.K. Shenoy (Elsevier North Holland, The Netherlands, 1979), p. 185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Muccilloa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muccilloa, R. Impedance spectroscopy analysis of zirconia:8 mol% yttria solid electrolytes with graphite pore former. Journal of Materials Research 24, 1780–1784 (2009). https://doi.org/10.1557/jmr.2009.0209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0209

Navigation