Skip to main content
Log in

A multifunctional poly(acrylic acid)/gelatin hydrogel

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A poly(acrylic acid)/gelatin interpenetrating network hydrogel was synthesized by aqueous solution polymerization. The influences of preparation conditions including cross-linker, initiator, gelatin content, and neutralization degree on the swelling ratios of the hydrogels are investigated. The swelling, mechanical strength, biodegradability, and drug-release properties of poly(acrylic acid)/gelatin hydrogel are evaluated. The hydrogel has excellent mechanical properties; tensile strength is 1500 kPa, and elongation at break is 887%, respectively. The in vitro biodegradation shows that an interpenetrating network structure exists in the poly(acrylic acid)/gelatin hybrid hydrogel. A release study indicates that the theophylline release from the hydrogel depends on the cross-linking density of the hydrogel and pH of the medium, and the drug diffusion obeys an anomalous transport model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Omidian, J.G. Rocca, and K. Park: Advances in superporous hydrogels. J. Controlled Release 102, 3 (2005).

    Article  CAS  Google Scholar 

  2. L.M. Geever, D.M. Devine, M.J.D. Nugent, J.E. Kennedy, J.G. Lyons, and C.L. Higginbotham: The synthesis, characterisation, phase behaviour and swelling of temperature sensitive physically crosslinked poly(1-vinyl-2-pyrrolidinone)/poly(N-isopropylacrylamide) hydrogels. Eur. Polym. J. 42, 69 (2006).

    Article  CAS  Google Scholar 

  3. D.C. Coughlan and O.I. Corrigan: Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. Int. J. Pharm. 313, 163 (2006).

    Article  CAS  Google Scholar 

  4. D.E. Rodriguez, J. Romero-Garcia, E. Ramirez-Vargas, and E. Arias-Marin: Synthesis and swelling characteristics of semi-interpenetrating polymer network hydrogels composed of poly (acrylamide) and poly(γ-glutamic acid). Mater. Lett. 60, 1390 (2006).

    Article  CAS  Google Scholar 

  5. Q.W. Tang, J.M. Lin, J.H. Wu, C.J. Zhang, and S.C. Hao: Two-steps synthesis of a poly(acrylate–aniline) conducting hydrogel with an interpenetrated networks structure. Carbohyd. Polum. 67, 332 (2007).

    Article  CAS  Google Scholar 

  6. F.M. Chen, Y.M. Zhao, H. Wu, Z.H. Deng, Q.T. Wang, and W. Zhou: Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran–co-gelatin microspheres. J. Control. Release 114, 209 (2006).

    Article  CAS  Google Scholar 

  7. K. Hori, C. Sotozono, J. Hamuro, K. Yamasaki, Y. Kimura, and M. Ozeki: Controlled-release of epidermal growth factor from cationized gelatin hydrogel enhances corneal epithelial wound healing. J. Control. Release 118, 169 (2007).

    Article  CAS  Google Scholar 

  8. Y. Tabata and Y. Ikada: Protein release from gelatin matrices. Adv. Drug Delivery Rev. 31, 287 (1998).

    Article  CAS  Google Scholar 

  9. Y. Tabata and Y. Ikada: Vascularization effect of basic fibroblast growth-factor released from gelatin hydrogels with different bio-degradabilities. Biomaterials 20, 2169 (1999).

    Article  CAS  Google Scholar 

  10. A. Iwakura, Y. Tabata, and T. Koyama: Gelatin sheet incorporating basic fibroblast growth factor enhances sternal healing after harvesting bilateral internal thoracic arteries. J. Thorac. Cardiovasc. Surg. 126, 1113 (2003).

    Article  CAS  Google Scholar 

  11. T. Nakano, K. Kaibara, Y. Tabata, N. Nagata, S. Enomoto, and E. Marukawa: Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam x-ray diffractometer system. Bone 31, 479 (2002).

    Article  CAS  Google Scholar 

  12. Y. Kimura, M. Ozeki, T. Inamoto, and Y. Tabata: Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor. Biomaterials 24, 2513 (2003).

    Article  CAS  Google Scholar 

  13. E. Karadag, O.B. Uzum, D. Saraydin, and O. Guven: Dynamic swelling behavior of γ-radiation induced polyelectrolyte poly (AAm-co-CA) hydrogels in urea solutions. Int. J. Pharm. 301, 102 (2005).

    Article  CAS  Google Scholar 

  14. Y. Tao, J.X. Zhao, and C.X. Wu: Polyacrylamide hydrogels with trapped sulfonated polyaniline. Eur. Polym. J. 41, 1342 (2005).

    Article  CAS  Google Scholar 

  15. H. Chiu, T. Hsiue, and W. Chen: FTIR-ATR measurements of the ionization extent of acrylic acid within copolymerized methacry-lated dextran/acrylic acid networks and its relation with pH/salt concentration-induced equilibrium swelling. Polymer (Guildf.). 45, 1627 (2004).

    Article  CAS  Google Scholar 

  16. Z.B. Chen, M.Z. Liu, and S.M. Ma: Synthesis and modification of salt-resistant superabsorbent polymers. React. Funct. Polym. 62, 85 (2005).

    Article  CAS  Google Scholar 

  17. A. Pourjavadi, S.H. Barzegar, and G.R. Mahdavinia: MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydr. Polym. 66, 386 (2006).

    Article  CAS  Google Scholar 

  18. Q.W. Tang, J.H. Wu, J.M. Lin, H. Sun, H.Y. Ao: A high mechanical strength hydrogel from polyacrylamide/polyacrylamide with interpenetrating network structure by two-steps synthesis method. e-Polymers 21, 1 (2008).

    Google Scholar 

  19. L. Serra, J. Domenech, and N.A. Peppas: Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27, 5440 (2006).

    Article  CAS  Google Scholar 

  20. M. Changez, V. Koul, B. Krishna, and V. Choudhary: Studies on biodegradation and release of gentamicin sulphate from interpenetrating network hydrogels based on poly(acrylic acid) and gelatin: In vitro and in vivo. Biomaterials 25, 139 (2004).

    Article  CAS  Google Scholar 

  21. Z.W. Yang, Y.S. Jiang, L.X. Xu, B. Wen, F.F. Li, S.M. Sun, and T.Y. Hou: Preparation and characterization of magnesium doped hydroxyapatitegelatin nanocomposite. J. Mater. Chem. 15, 1807 (2005).

    Article  CAS  Google Scholar 

  22. J.H. Wu, Y.L. Wei, J.M. Lin, and S.B. Lin: Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer (Guildf.). 44, 6513 (2003).

    Article  CAS  Google Scholar 

  23. A. Li and A. Wang: Synthesis and properties of clay-based super-absorbent composite. Eur. Polym. J. 41, 1630 (2005).

    Article  CAS  Google Scholar 

  24. J.H. Wu, J.M. Lin, G.Q. Li, and C.R. Wei: Influence of the COOH and COONa groups and crosslink density of poly(acrylic acid)/montmorillonite superabsorbent composite on water absor-bency. Polym. Int. 50, 1050 (2001).

    Article  CAS  Google Scholar 

  25. J.H. Wu, Y.L. Wei, J.M. Lin, and S.B. Lin: Preparation of a starch-graft-acrylamide/kaolinite superabsorbent composite and the influence of the hydrophilic group on its water absorbency. Polym. Int. 52, 1909 (2003).

    Article  CAS  Google Scholar 

  26. A. Pourjavadi, S.H. Barzegar, and F. Zeidabadi: Synthesis and properties of biodegradable hydrogels of k-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems. React. Fund. Polym. 67, 644 (2007).

    Article  CAS  Google Scholar 

  27. H. Tsukeshiba, M. Huang, Y.H. Na, and Y. Tanaka: Effect of polymer entanglement on the toughening of double network hydrogels. J. Phys. Chem. B 109, 16304 (2005).

    Article  CAS  Google Scholar 

  28. Y.H. Na, T. Kurokawa, and H. Tsukeshiba: Structural characteristics of double network gels with extremely high mechanical strength. Macromolecules 37, 5370 (2004).

    Article  CAS  Google Scholar 

  29. X.Q. Jia, J.A. Burdick, J. Kobler, R.J. Clifton, J.J. Rosowski, and S.M. Zeitel: Synthesis and characterization of in situ cross-linkable hyaluronic acid-based hydrogels with potential application for vocal fold regeneration. Macromolecules 37, 3239 (2004).

    Article  CAS  Google Scholar 

  30. J.D. Ferry: Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).

    Google Scholar 

  31. R.B. Bird, R.C. Armstrong, and O. Hassager: Dynamics of Polymeric Liquids, (Wiley, New York, 1977), p. 129.

    Google Scholar 

  32. D. Stephens, L. Kli, D. Robinson, S. Chen, H.C. Chang, R.M. Liu, Y. Tian, E.J. Ginsburg, X. Gao, and T. Stultz: Investigation of the in vitro release of gentamicin from a poly anhydride matrix. J. Control. Release 63, 305 (2000).

    Article  CAS  Google Scholar 

  33. P.L. Ritger and N.A. Peppas: A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 5, 23 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihuai Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Q., Wu, J., Lin, J. et al. A multifunctional poly(acrylic acid)/gelatin hydrogel. Journal of Materials Research 24, 1653–1661 (2009). https://doi.org/10.1557/jmr.2009.0210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0210

Navigation