Skip to main content
Log in

Zirconium tungstate reinforced cyanate ester composites with enhanced dimensional stability

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Zirconium tungstate (ZrW2O8) is a unique ceramic material characterized by isotropic negative thermal expansion behavior over a wide temperature range. Incorporation of ZrW2O8 is expected to improve the dimensional stability of polymers by reducing the overall coefficient of thermal expansion (CTE). In this work, the thermal and dynamic mechanical properties of a bisphenol E cyanate ester reinforced with various loadings of ZrW2O8 are examined. Thermomechanical analysis indicates that the incorporation of ZrW2O8 results in a decrease in CTE at temperatures above and below the glass transition temperature (Tg) of the neat resin. The dynamic storage moduli of the composites reinforced with ZrW2O8 are found to increase with increasing filler loading. Furthermore, the various phase behaviors exhibited by ZrW2O8 are also examined by differential scanning calorimetry measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.W. Sleight: Isotropic negative thermal expansion. Annu. Rev. Mater. Sci. 28, 29 (1998).

    Article  CAS  Google Scholar 

  2. T.A. Mary, J.S.O. Evans, T. Vogt, and A.W. Sleight: Negative thermal expansion from 0.3 to 1050 K in ZrW2O8. Science 272, 90 (1996).

    Article  CAS  Google Scholar 

  3. J.S.O. Evans, Z. Hu, J.D. Jorgensen, D.N. Argyriou, S. Short, and A.W. Sleight: Compressibility, phase transitions, and oxygen migration in zirconium tungstate. Science 275, 61 (1997).

    Article  CAS  Google Scholar 

  4. J.D. Jorgensen, Z. Hu, S. Teslic, D.N. Argyriou, S. Short, J.S.O. Evans, and A.W. Sleight: Pressure induced cubic to orthorhombic phase transition in ZrW2O8. Phys. Rev. B 59, 215 (1999).

    Article  CAS  Google Scholar 

  5. C.A. Figueiredo, J. Catafesta, J.E. Zorzi, L. Salvador, J.R. Baumvol, M.R. Gallas, J.A.H. da Jornada, and C.A. Perottoni: Compression mechanism and pressure induced amorphization of ZrW2O8. Phys. Rev. B 76, 184201 (2007).

    Article  Google Scholar 

  6. C.A. Perottoni, J.E. Zorzi, and J.A.H. da Jornada: Entropy increase in amorphous to crystalline phase transition in zirconium tungstate. Solid State Commun. 134, 319 (2005).

    Article  CAS  Google Scholar 

  7. W.M. Cross, B.D. Henderson, W.C. Weyer, C. Kroetch, L. Kjerentroen, J. Welsh, and J.J. Kellar: Functional fillers for dimensional stability, in Functional Fillers and Nanoscale Minerals, edited by J.J. Kellar (SME Inc., Littleton, CO, 2006), p. 127.

    Google Scholar 

  8. A.W. Sleight, J.S.O. Evans, and W.I.F. David: Structural investigation of the negative thermal expansion material ZrW2O8. Acta Crystallogr., Sect. B 55, 333 (1999).

    Article  Google Scholar 

  9. A.K.A. Pryde, K.D. Hammonds, M.T. Dove, V. Heine, J.D. Gale, and M.C. Warren: Origin of negative thermal expansion in ZrW2O8 and ZrV2O7. J. Phys.: Condens. Matter 8, 10973 (1996).

    CAS  Google Scholar 

  10. J.D. Shi, Z.J. Pu, and K.H. Wu: Composites with adjustable thermal expansion for electronic applications, in Electronic Packaging Materials Science IX, edited by S.K. Groothuis, P.S. Ho, K. Ishida, and T. Wu (Mater. Res. Soc. Symp. Proc. 445, Warrendale, PA, 1997), p. 229.

    Google Scholar 

  11. W.C. Weyer, W.M. Cross, B. Henderson, J.J. Kellar, L. Kjerentroen, J. Welsh, and J. Starkovich: Achieving dimensional stability using functional fillers, in Proceedings of the Structural Dynamics and Materials Conference (Austin, TX, 2005), p. 2091.

    Google Scholar 

  12. L.M. Sullivan and C.M. Lukehart: Zirconium tungstate/polyimide nanocomposites exhibiting reduced coefficient of thermal expansion. Chem. Mater. 17, 2136 (2005).

    Article  CAS  Google Scholar 

  13. J.I. Tani, H. Kimura, K. Hiorata, and H. Kido: Thermal expansion and mechanical properties of phenolic resin/ZrW2O8 composites. J. Appl. Polym. Sci. 106, 3343 (2007).

    Article  CAS  Google Scholar 

  14. W. Miller, C.W. Smith, P. Dooling, A.N. Burgess, and K.E. Evans: Tailored thermal expansivity in particulate composites for thermal stress management. Phys. Status Solidi 245, 552 (2006).

    Article  Google Scholar 

  15. W.K. Goertzen and M.R. Kessler: Thermal and mechanical behavior of cyanate ester composites with low temperature processability. Composites Part A 779, 38 (2007).

    Google Scholar 

  16. X. Sheng, M. Akinc, and M.R. Kessler: Cure kinetics of thermosetting bisphenol E cyanate ester. J. Therm. Anal. Calorim. 93, 77 (2008).

    Article  CAS  Google Scholar 

  17. W.K. Goertzen and M.R. Kessler: Dynanmic mechanical analysis of fumed silica cyanate ester nanocomposites. Composites Part A 761, 39 (2008).

    Google Scholar 

  18. W.K. Goertzen, X. Sheng, M. Akinc, and M.R. Kessler: Rheology and curing kinetics of fumed silica cyanate ester nanocomposites. Polym. Eng. Sci. 48, 875 (2008).

    Article  CAS  Google Scholar 

  19. X. Sheng, M. Akinc, and M.R. Kessler: The effects of alumina nanoparticles on the cure kinetics of bisphenol E cyanate ester. Polym. Eng. Sci. (submitted, 2009).

    Google Scholar 

  20. W.K. Goertzen and M.R. Kessler: Three phase cyanate ester composites with fumed silica and negative CTE reinforcements. J. Therm. Anal. Calorim. 93, 87 (2008).

    Article  CAS  Google Scholar 

  21. C.D. De Meyer, L. Vandperre, I. Van Driessche, E. Bruneel, and S. Hoste: Processing effects observed during the densification of the negative CTE compound ZrW2O8. Cryst. Eng. 5, 468 (2002).

    Article  Google Scholar 

  22. H. Holzer and D.C. Dunand: Phase transformation and thermal expansion of Cu/ZrW2O8 metal matrix composites. J. Mater. Res. 14, 780 (1999).

    Article  CAS  Google Scholar 

  23. K.J. Haman, P. Badrinarayanan, and M.R. Kessler: Effect of zirconium tungstate filler on the cure behavior of a cyanate ester. App. Mater. Int. (in press, 2009) DOI: 10.1021/am900051g.

    Google Scholar 

  24. J. Qiu, C. Zhang, B. Wang, and R. Liang: Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology 18, 275708 (2007).

    Article  Google Scholar 

  25. W.K. Goertzen and M.R. Kessler: Thermal expansion of fumed silica cyanate ester nanocomposites. J. Appl. Polym. Sci. 109, 647 (2008).

    Article  CAS  Google Scholar 

  26. C.P. Wong and R.S. Bollampally: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74, 3396 (1999).

    Article  CAS  Google Scholar 

  27. H.T. Vo, M. Todd, F.G. Shi, A.A. Shapiro, and M. Edwards: Towards model based engineering of underfill materials: CTE modeling. Microelectron. J. 32, 331 (2001).

    Article  CAS  Google Scholar 

  28. R.A. Schapery: Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2, 380 (1968).

    Article  Google Scholar 

  29. F.R. Drymiotis, H. Ledbetter, J.B. Betts, T. Kimura, J.C. Lashley, A. Migliori, A.P. Ramirez, G.R. Kowach, and J. Van Duijn: Monocrystal elastic constants of the negative-thermal-expansion compoundzirconium tungstate (ZrW2O8). Phys. Rev. Lett. 93, 25502 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Kessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badrinarayanan, P., Murray, B.M. & Kessler, M.R. Zirconium tungstate reinforced cyanate ester composites with enhanced dimensional stability. Journal of Materials Research 24, 2235–2242 (2009). https://doi.org/10.1557/jmr.2009.0266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0266

Navigation