Skip to main content
Log in

Structural and elastic properties of Cu6Sn5 and Cu3Sn from first-principles calculations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We investigated the elastic properties of two tin-copper crystalline phases, the η′-Cu6Sn5 and ε-Cu3Sn, which are often encountered in microelectronic packaging applications. The full elastic stiffness of both phases is determined based on strain-energy relations using first-principles calculations. The computed results show the elastic anisotropy of both phases that cannot be resolved from experiments. Our results, suggesting both phases have the greatest stiffness along the c direction, particularly showed the unique in-plane elastic anisotropy associated with the lattice modulation of the Cu3Sn superstructure. The polycrystalline moduli obtained using the Voigt-Reuss scheme are 125.98 GPa for Cu6Sn5 and 134.16 GPa for Cu3Sn. Our data analysis indicates that the smaller elastic moduli of Cu6Sn5 are attributed to the direct Sn–Sn bond in Cu6Sn5. We reassert the elastic modulus and hardness of both phases using the nanoindentation experiment for our calculation benchmark. Interestingly, the computed polycrystalline elastic modulus of Cu6Sn5 seems to be overestimated, whereas that of Cu3Sn falls nicely in the range of reported data. Based on the observations, the elastic modulus of Cu6Sn5 obtained from nanoindentation tests admit the microstructure effect that is absent for Cu3Sn is concluded. Our analysis of electronic structure shows that the intrinsic hardness and elastic modulus of both phases are dominated by electronic structure and atomic lattice structure, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Tu and K. Zeng: Tin-lead (SnPb) solder reaction in flip chip technology. Mater. Sci. Eng., R 34, 1 (2001).

    Article  CAS  Google Scholar 

  2. T. Laurila, V. Vuoriene, and J.K. Kivilahti: Interfacial reactions between lead-free solders and common base material. Mater. Sci. Eng., R 49, 1 (2005).

    Article  CAS  Google Scholar 

  3. M. Nakamura: Intermetallic Compounds, vol. 2 (reprint volumes), edited by J.H. Westbrook and R.L. Fleischer (John Wiley and Sons, London, UK, 1995), p. 2.

    Google Scholar 

  4. P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson: Densityfunctional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84, 4891 (1998).

    Article  CAS  Google Scholar 

  5. K.B. Panda and K.S.R. Chandran: Determination of elastic constant of titanium diboride (TiB2) from first principles using FLAPW implementation of the density-functional theory. Comput. Mater. Sci. 35, 134 (2006).

    Article  CAS  Google Scholar 

  6. M.J. Mehl, B.M. Klein, and D.A. Papaconstantantopoulos: Intermetallic Compounds: Principles and Practice, vol. 1, edited by T.B. Massalski (John Wiley and Sons, London, UK, 1965), p. 295.

    Google Scholar 

  7. H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, and T. Saito: First-principles calculations for development of low elastic modulus Ti alloys. Phys. Rev. B 70, 174113 (2004).

    Article  CAS  Google Scholar 

  8. B. Holm, R. Ahuja, and B. Johansson: Ab initio calculations of the mechanical properties of Ti3SiC2. Appl. Phys. Lett. 79, 1450 (2001).

    Article  CAS  Google Scholar 

  9. Z. Sun, R. Ahuja, S. Li, and J.M. Schneider: Structure and bulk modulus of M2AlC (M=Ti, V, and Cr). Appl. Phys. Lett. 83, 899 (2003).

    Article  CAS  Google Scholar 

  10. G. Ghosh: Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. J. Mater. Res. 19, 1439 (2004).

    Article  CAS  Google Scholar 

  11. G. Ghosh and M. Asta: Phase stability, phase transformations, and elastic properties of Cu6Sn5: Ab initio calculations and experimental results. J. Mater. Res. 20, 3102 (2005).

    Article  CAS  Google Scholar 

  12. N.T.S. Lee, V.B.C. Tan, and K.M. Lim: First-principle calculations of structural and mechanical properties of Cu6Sn5. Appl. Phys. Lett. 88, 031913 (2006).

    Article  CAS  Google Scholar 

  13. R. An, C. Wang, Y. Tian, and H. Wu: Determination of the elastic properties of Cu3Sn through first-principles calculations. J. Electron. Mater. 37, 477 (2008).

    Article  CAS  Google Scholar 

  14. X.Y. Pang, S.Q. Wang, L. Zhang, Z.Q. Liu, and J.K. Shang: First principles calculation of elastic and lattice constants of orthorhombic Cu3Sn crystal. J. Alloys Compd. 466, 517 (2008).

    Article  CAS  Google Scholar 

  15. J. Chen, Y-S Lai, and P-F. Yang: First-principles calculations of elastic properties of Cu-Sn crystalline phases, in Proceedings of IMPACT 2007 (2nd Int. Microsystems, Packaging, Assembly, and Circuits Technology Conf., Taipei, Taiwan, 2007), p. 193.

    Google Scholar 

  16. J. Chen, Y-S. Lai, C-Y. Ren, and D-J. Huang: First-principles calculations of elastic properties of Cu3Sn superstructure. Appl. Phys. Lett. 92, 081901 (2008).

    Article  CAS  Google Scholar 

  17. C. Yu, J. Liu, H. Lu, P. Li, and J. Chen: First-principles investigations of the structural and electronic properties of Cu6-xNixSn5 intermetallic compounds. Intermetallics 15, 1471 (2007).

    Article  CAS  Google Scholar 

  18. H. Yu, V. Vuorinen, and J. Kivilahti: Effect of Ni on the formation of Cu6Sn5 and Cu3Sn intermetallics. IEEE Trans. Electron. Packag. Manuf. 30, 293 (2007).

    Article  CAS  Google Scholar 

  19. J. Chen and Y-S. Lai: Towards elastic anisotropy and straininduced void formation in Cu-Sn crystalline phases. Microelectron. Reliab. 49, 264 (2009).

    Article  CAS  Google Scholar 

  20. A.K. Larsson, L. Stenberg, and S. Lidin: The superstructure of domain-twinned Cu6Sn5. Acta Crystallogr., Sect. B 50, 636 (1994).

    Article  Google Scholar 

  21. B. Hyde and S. Andersson: Inorganic Crystal Structures (Wiley, New York, 1989).

    Google Scholar 

  22. Y. Watanabe, Y. Fujinaga, and H. Iwasaki: Lattice modulation in the long-period superstructure of Cu3Sn. Acta Crystallogr., Sect. B 39, 306 (1983).

    Article  Google Scholar 

  23. W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133 (1964).

    Article  Google Scholar 

  24. G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  25. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  26. P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  27. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  28. D.M. Ceperley and B.J. Alder: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  29. J.F. Nye: Physical Properties of Crystal (Oxford Science Publications, Oxford, 1985).

    Google Scholar 

  30. P. Söderlind, O. Eriksson, J.M. Wills, and A.M. Boring: Theory of elastic constants of cubic transition metals and alloys. Phys. Rev. B 48, 5844 (1993).

    Article  Google Scholar 

  31. L. Fast, J.M. Wills, B. Johansson, and O. Eriksson: Elastic constants of hexagonal transition metals. Theory Phys. Rev. B 51, 17431 (1995).

    Article  CAS  Google Scholar 

  32. Z.A.A. Reuss: Calculating the limit of Mishkristallen flowing due to the Plastizitatsbeding for monocrystals. Math. Mech. 9, 49 (1929).

    CAS  Google Scholar 

  33. W. Voigt: Textbook of Crystal Physics (Teubner, Leipzig, 1910).

    Google Scholar 

  34. R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London 65, 350 (1952).

    Article  Google Scholar 

  35. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Google Scholar 

  36. P-F. Yang, Y-S. Lai, S-R. Jian, J. Chen, and R-S. Chen: Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples. Mater. Sci. Eng., A 485, 305 (2008).

    Article  CAS  Google Scholar 

  37. X. Li and B. Bhushan: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002).

    Article  CAS  Google Scholar 

  38. H.K. Kim, H.K. Liou, and K.N. Tu: Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu. Appl. Phys. Lett. 66, 2337 (1995).

    Article  CAS  Google Scholar 

  39. D. Ma, W.D. Wang, and S.K. Lahiri: Scallop formation and dissolution of Cu-Sn intermetallic compound using solder reflow. J. Appl. Phys. 91, 3312 (2002).

    Article  CAS  Google Scholar 

  40. J.O. Suh, K.N. Tu, and N. Tamura: Dramatic morphological change of scallop-type Cu6Sn5 formed on (001) single crystal copper in reaction between molten SnPb solder and Cu. Appl. Phys. Lett. 91, 051907 (2007).

    Article  CAS  Google Scholar 

  41. H.K. Kim and K.N. Tu: Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening. Phys. Rev. B 53, 16027 (1996).

    Article  CAS  Google Scholar 

  42. J.O. Suh, K.N. Tu, G.V. Lutsenko, and A.M. Gusak: Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper. Acta Mater. 56, 1075 (2008).

    Article  CAS  Google Scholar 

  43. D.G. Clerc and H.M. Ledbetter: Mechanical hardness: A semiempirical theory based on screened electrostatics and elastic shear. J. Phys. Chem. Solids 59, 1071 (1998).

    Article  CAS  Google Scholar 

  44. S-H. Jhi, J. Ihm, S.G. Louie, and M.L. Cohen: Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 399, 132 (1999).

    Article  CAS  Google Scholar 

  45. J. Gilman: Physical chemistry of intrinsic hardness. Mater. Sci. Eng., A 209, 74 (1996).

    Article  Google Scholar 

  46. F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian: Hardness of covalent crystals. Phys. Rev. Lett. 91, 015502 (2003).

    Article  CAS  Google Scholar 

  47. G. Ghosh: First-principle calculation of phase stability and cohesive properties of Ni-Sn intermetallic. Metall Mater. Trans. A 40, 4 (2009).

    Article  CAS  Google Scholar 

  48. X. Deng, M. Koopman, N. Chawla, and K.K. Chawla: Young’s modulus of (Cu,Ag)-Sn intermetallics measured by nanoindentation. Mater. Sci. Eng., A 364, 240 (2004).

    Article  CAS  Google Scholar 

  49. X. Deng, N. Chawla, K.K. Chawla, and M. Koopman: Deformation behavior of (Cu,Ag)-Sn intermetallics by nanoindentation. Acta Mater. 52, 4291 (2004).

    Article  CAS  Google Scholar 

  50. G-Y. Jang, J-W. Lee, and J-G. Duh: The nanoindentation characteristics of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds in the solder bump. J. Electron. Mater. 33, 1103 (2004).

    Article  CAS  Google Scholar 

  51. R.R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis: Nanoindentation measurements on Cu-Sn and Ag-Sn intermetallics formed in Pb-free solder joints. J. Mater. Res. 18, 2251 (2003).

    Article  CAS  Google Scholar 

  52. R.J. Field, S.R. Low III and J.G.K. Lucey: Metal Science of Joining, edited by M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E. Glicksman (TMS, Warrendale, PA, 1991), pp. 165–174.

  53. R. Cabaret, L. Guillet, and R. LeRoux: The elastic properties of metallic alloys. J. Inst. Met. 75, 391 (1949).

    Google Scholar 

  54. L.M. Ostrovskaya, V.N. Rodin, and A.I. Kuznetsov: Soviet J. Non-Ferrous Metall. 26, 90 (1985).

    Google Scholar 

  55. W. Burkhardt and K. Schubert: Z. Metallkd. 50, 442 (1959).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiunn Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Li, YS., Yang, PF. et al. Structural and elastic properties of Cu6Sn5 and Cu3Sn from first-principles calculations. Journal of Materials Research 24, 2361–2372 (2009). https://doi.org/10.1557/jmr.2009.0273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0273

Navigation