Skip to main content
Log in

Synthesis and oxidation stability of monosized and monocrystalline Pr nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study reports the synthesis of monosized Pr nanoparticles with a controllable size ranging from 5 to 20 nm. Pr agglomerates generated by a spark generator, first sizeselected by a differential mobility analyzer and subsequently sintered in-flight at different temperatures result in spherical and monocrystalline Pr nanoparticles. The dependence of size and size distribution of Pr nanoparticles has been studied as a function of deposition parameters related to spark generator, differential mobility analyzer, and sintering. Transmission electron microscopy, energy-dispersive x-ray analysis, glancing angle x-ray diffraction, and x-ray photoelectron spectroscopy studies confirm that initial Pr agglomerates and the resulting nanoparticles are metallic with d-hexagonal structure and remain stable in air during post-deposition exposure. Incomplete or partially sintered nanoparticles were found to be oxidized, resulting in the formation of amorphous oxide phase due to enhanced oxidation at grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Uda, K.T. Jacob, and M. Hirasawa: Technique for enhanced rare earth separation. Science 289, 2326 (2000).

    Article  CAS  Google Scholar 

  2. D.J. Fray: Separating rare earth elements. Science 289, 2295 (2000).

    Article  CAS  Google Scholar 

  3. P.J. von Ranke, M.A. Mota, D.F. Grangeia, A. Magnus, G. Carvelho, F.C.G. Gandra, A.A. Coelho, A. Caldas, N.A. de Oliveira, and S. Gamaa: Magnetocaloric effect in the RNi5 (R= Pr, Nd, Gd, Tb, Dy, Ho, Er) series. Phys. Rev. B 70, 134428 (2004).

    Article  Google Scholar 

  4. R. Rawat and I. Das: Magentic transitions in CeCu0.86Ge2 and PrCu0.76Ge2 as studied by magnetocaloric effect. Phys. Rev. B: Condens. Matter 64, 052407 (2001).

    Article  Google Scholar 

  5. X. Song, J. Zhang, M. Yue, E. Li, H. Zeng, N. Lu, M. Zhou, and T. Zuo: Technique for preparing ultrafine nanocrystalline bulk material of pure rare-earth metals. Adv. Mater. 18, 1210 (2006).

    Article  CAS  Google Scholar 

  6. I.R. Mitchell, P.M. Farrell, G.W. Baxter, S.F. Collins, K.T.V. Grattan, and T. Sun: Analysis of dopant concentration effects in praseodymium-based fluorescent fiber optic temperature sensors. Rev. Sci. Instrum. 71, 100 (2000).

    Article  CAS  Google Scholar 

  7. J.N. Huiberts, R. Griessen, J.H. Rector, R.J. Wijngaarden, J.P. Dekker, D.G. de Groot, and N.J. Koeman: Yttrium and lanthanum hydride films with switchable optical properties. Nature 380, 231 (1996).

    Article  CAS  Google Scholar 

  8. A. Züttel: Materials for hydrogen storage. Mater. Today 24, (September) (2003).

  9. A. Amadeh, B. Pahlevani, and S. Heshmati-Manesh: Effects in rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings. Corros. Sci. 44, 2321 (2002).

    Article  CAS  Google Scholar 

  10. S.K. Paul, A.K. Chakrabarty, and S. Basu: Effect of rare earth additions on the inclusions and properties of a Ca-Al deoxidized steel. Metall. Trans. B 13, 185 (1982).

    Article  Google Scholar 

  11. B.M. Bist and O.N. Srivastava: A new f. c.c., gadolinium phase and its oxidation. J. Less-Common Met. 33, 99 (1973).

    Article  CAS  Google Scholar 

  12. D. Weller and D.D. Sarma: Formation of a passive layer in surface oxidation of Gd: A LEED and AES study. Surf. Sci. 171, L425 (1986).

    Article  CAS  Google Scholar 

  13. T. Arakawa, A. Kabumoto, and J. Shiokawa: Some electrical properties of praseodymium oxide films produced by oxidation of thin metal films. J. Less-Common Met. 115, 281 (1986).

    Article  CAS  Google Scholar 

  14. M. Gasgnier, J. Ghys, G. Schiffmacher, Ch.H. La Blanchetais, P.E. Caro, C. Boulesteix, Ch. Loier, and B. Pardo: Rare-earthhydrides and rare earth oxides in and from thin films of rare-earthmetals. J. Less-Common Met. 34, 131 (1974).

    Article  CAS  Google Scholar 

  15. P.Z. Si, I. Skorvánek, J. Kovàĉ, D.Y. Geng, X.G. Zhao, and Z.D. Zhang: Structure and magnetic properties of Gd nanoparticlesand carbon coated Gd/GdC2 nanocapsules. J. Appl.Phys. 94, 6779 (2003).

    Article  CAS  Google Scholar 

  16. Y. Saito, M. Okuda, T. Yoshikawa, A. Kasuya, and Y. Nishina:Correlation between volatility of rare-earth metals and encapsulationof their carbides in carbon nanocapsules. J. Phys. Chem. 98, 6696 (1994).

    Article  CAS  Google Scholar 

  17. A.R. Wildes, R.C.C. Ward, M.R. Wells, and B. Hjörvarsson: The formation of epitaxial YH 2 in MBE grown yttrium thinfilms with a thin gold capping layer. J. Alloys Compd. 242, 49(1996).

    Article  CAS  Google Scholar 

  18. H. Wan, A. Tsoukatos, Y.J. Zhang, G.C. Hadjipanayis, and S.I. Shah: Magnetic properties of Er-Ta granular thin films.Nanostruct. Mater. 1, 505 (1992).

    CAS  Google Scholar 

  19. Y. Zhang, C.E. Nelson, Z.C. Yan, V. Skumryev, and G.C. Hadjipanayis: Application of energy-filtered imaging andHREM hrem in the study of terbium nanoparticles. Microsc. Microanal. 8, 1360 (2002).

    Article  Google Scholar 

  20. C.E. Krill, F. Merzoug, W. Krauss, and R. Birringer: Magneticproperties of nanocrystalline Gd and W/Gd. Nanostruct. Mater. 9, 455 (1997).

    CAS  Google Scholar 

  21. N.B. Shevcenko, A.S. Murthy, and G.C. Hadjipanayis: Microstructuraland magnetic studies of granular Gd-W films. Mater.Sci. Eng., A 204, 39 (1995).

    Article  Google Scholar 

  22. D. Johnson, P. Perera, and M.J. O’Shea: Finite size effect innanoscale Tb nanoparticles. J. Appl. Phys. 79, 5299 (1996).

    Article  CAS  Google Scholar 

  23. N.B. Shevcenko, A.S. Murthy, and G.C. Hadjipanayis: Preparationand characterization of Dy nanoparticles. Appl. Phys. Lett. 74, 1478 (1999).

    Article  Google Scholar 

  24. D. Weller, S.F. Alvarado, M. Campagna, W. Gudat, and D.D. Sarma: Structure, magnetism and electronic excitations of epitaxial gadolinium (0001) on tungsten (110). Less-Common Metals 111, 277(1985).

    Article  CAS  Google Scholar 

  25. I. Aruna, B.R. Mehta, L.K. Malhotra, and S.M. Shivaprasad: Stabilityand hydrogenation of bare gadolinium nanoparticles. Adv.Mater. 16, 169 (2004).

    Article  CAS  Google Scholar 

  26. J.A. Nelson, L.H. Bennett, and M.J. Wagner: Solution synthesis of gadolinium nanoparticles. J. Am. Chem. Soc. 124, 2979 (2002).

    Article  CAS  Google Scholar 

  27. J.A. Nelson, L.H. Bennett, and M.J. Wagner: Dysprosium nanoparticles synthesized by alkalide reduction. J. Mater. Chem. 13, 857 (2003).

    Article  CAS  Google Scholar 

  28. J.A. Ascencio, G. Canizal, A. Medina-Flores, L. Bejar, L. Tavera, H. Matamoros, and H. Liu: Neodymium nanoparticles: Biosíntesis and structural análisis. J. Nanosci. Nanotechnol. 6, 1044 (2006).

    Article  CAS  Google Scholar 

  29. D. Michels, C.E. Krill III and R. Birringer: Grain-size-dependent Curie transition in nanocrystalline Gd: The influence of interface stress. J. Magn. Magn. Mater. 250, 203 (2002).

    Article  CAS  Google Scholar 

  30. C.H. Shek and Y.Z. Shao: Characteristics of growth fractal of nanosized gadolinium powder and its abnormality in magnetic susceptibility. Scr. Mater. 44, 959 (2001).

    Article  CAS  Google Scholar 

  31. J. Dixkens and H. Fissan: Development of an electrostatic precipitator for off-line particle analysis. Aerosol Sci. Technol. 30, 438 (1999).

    Article  CAS  Google Scholar 

  32. M.N.A. Karlsson, K. Deppert, L.S. Karlsson, M.H. Magnusson, J-O. Malm, and N.S. Srinivassan: Compaction of agglomerates of aerosol nanoparticles: A compilation of experimental data. J. Nanopart. Res. 7, 43 (2005).

    Article  CAS  Google Scholar 

  33. J.J. Hanak and A.H. Daane: High temperature allotropy and thermal expansion of the rare-earth metals. J. Less-Common Met. 3, 110 (1961).

    Article  Google Scholar 

  34. G. Crecelius, G.K. Wertheim, and D.N.E. Buchanan: Core-hole screening in lanthanide metals. Phys. Rev. B: Condens. Matter 18, 6519 (1978).

    Article  CAS  Google Scholar 

  35. Y. Uwamino, T. Ishizuka, and H. Yamatera: X-ray photoelectron spectroscopy of rare-earth compounds. J. Electron Spectrosc. Relat. Phenom. 34, 67 (1984).

    Article  CAS  Google Scholar 

  36. M.G. Mason: Electronic structure of supported small metal clusters. Phys. Rev. B: Condens. Matter 27, 748 (1983).

    Article  CAS  Google Scholar 

  37. G.K. Wertheim, S.B. DiCenzo, and D.N.E. Buchanan: Noble- and transition-metal clusters: The d bands of silver and palladium. Phys. Rev. B: Condens. Matter 33, 5384 (1986).

    Article  CAS  Google Scholar 

  38. D.W. Fischer and W.L. Baun: Self-absorption effects in the soft x-ray Ma and Mb emission spectra of the rare earth elements. J. Appl. Phys. 38, 4830 (1967).

    Article  CAS  Google Scholar 

  39. G.K. Wertheim and M. Champagna: Screening of 3d holes in the rare earths. Solid State Commun. 26, 553 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodh Raj Mehta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kala, S., Raj Mehta, B., Kruis, F.E. et al. Synthesis and oxidation stability of monosized and monocrystalline Pr nanoparticles. Journal of Materials Research 24, 2276–2285 (2009). https://doi.org/10.1557/jmr.2009.0281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0281

Navigation