Skip to main content
Log in

Measuring anisotropy in Young’s modulus of copper using microcantilever testing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Focused ion beam machining was used to manufacture microcantilevers 30 µm by 3 µm by 4 µm with a triangular cross section in single crystal copper at a range of orientations between. These were imaged and tested using AFM/nanoindentation. Each cantilever was indented multiple times at a decreasing distance away from the fixed end. Variation of the beam’s behavior with loading position allowed a critical aspect ratio (loaded length:beam width) of 6 to be identified above which simple beam approximations could be used to calculate Young’s modulus. Microcantilevers were also milled within a single grain in a polycrystalline copper sample and electron backscattered diffraction was used to identify the direction of the long axis of the cantilever. The experimentally measured values of Young’s modulus and their variation with orientation were found to be in good agreement with the values calculated from the literature data for bulk copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.G. Ritchie: Improved resonant bar techniques for measurement of dynamic elastic-moduli and test of Timoshenko beam theory. J. Sound Vib. 31(4), 453 (1973).

    Article  Google Scholar 

  2. H. Ledbetter: Dynamic vs static Young moduli: A case study. Mater. Sci. Eng., A 165(1), L9 (1993).

    Article  Google Scholar 

  3. D.B. Sirdeshmukh and K.G. Subhadra: Consistency checks on elastic properties of crystals. J. Mater. Sci. 40(7), 1553 (2005).

    Article  CAS  Google Scholar 

  4. R.J. Talling, R.J. Dashwood, M. Jackson, S. Kurarnoto, and D. Dye: Determination of (C-11-C-12) in Ti-36Nb-2Ta-3Zr-0.3O (wt%) (gum metal). Scr. Mater. 59(6), 669 (2008).

    Article  CAS  Google Scholar 

  5. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).

    Article  CAS  Google Scholar 

  6. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).

    Article  CAS  Google Scholar 

  7. J.J. Vlassak and W.D. Nix: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42(8), 1223 (1994).

    Article  Google Scholar 

  8. D. Di Maio and S.G. Roberts: Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J. Mater. Res. 20(2), 299 (2005).

    Article  Google Scholar 

  9. D. Kiener, W. Grosinger, G. Dehm, and R. Pippan: A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56(3), 580 (2008).

    Article  CAS  Google Scholar 

  10. D. Kiener, C. Motz, T. Schoberl, M. Jenko, and G. Dehm: Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8(11), 1119 (2006).

    Article  CAS  Google Scholar 

  11. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986 (2004).

    Article  CAS  Google Scholar 

  12. S. Johansson, J.A. Schweitz, L. Tenerz, and J. Tiren: Fracture testing of silicon microelements in situ in a scanning electronmicroscope. J. Appl. Phys. 63(10), 4799 (1988).

    Article  CAS  Google Scholar 

  13. T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix: Mechanical deflection of cantilever microbeamsA new technique for testing the mechanical-properties of thin-films. J. Mater. Res. 3(5), 931 (1988).

    Article  Google Scholar 

  14. M.D. Uchic and D.A. Dimiduk: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng., A 400, 268 (2005).

    Article  Google Scholar 

  15. K.S. Ng and A.H.W. Ngan: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56(8), 1712 (2008).

    Article  CAS  Google Scholar 

  16. C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, and E. Arzt: Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489(12), 319 (2008).

    Article  Google Scholar 

  17. M.D. Uchic, D.M. Dimiduk, R. Wheeler, P.A. Shade, and H.L. Fraser: Application of micro-sample testing to study fundamental aspects of plastic flow. Scr. Mater. 54(5), 759 (2006).

    Article  CAS  Google Scholar 

  18. J.R. Greer and W.D. Nix: Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A 80(8), 1625 (2005).

    Article  CAS  Google Scholar 

  19. J.R. Greer and W.D. Nix: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73(24), 245410 (2006).

    Article  Google Scholar 

  20. C.A. Volkert, E.T. Lilleodden, D. Kramer, and J. Weissmuller: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89(6), 061920 (2006).

    Article  Google Scholar 

  21. D. Kiener, C. Motz, and G. Dehm: Dislocation-induced crystal rotations in micro-compressed single crystal copper columns. J. Mater. Sci. 43(7), 2503 (2008).

    Article  CAS  Google Scholar 

  22. Y.H. Lai, C.J. Lee, Y.T. Cheng, H.S. Chou, H.M. Chen, X.H. Du, C.I. Chang, J.C. Huang, S.R. Jian, J.S.C. Jang, and T.G. Nieh: Bulk and microscale compressive behavior of a Zr-based metallic glass. Scr. Mater. 58(10), 890 (2008).

    Article  CAS  Google Scholar 

  23. B.E. Schuster, Q. Wei, T.C. Hufnagel, and K.T. Ramesh: Sizeindependent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater. 56(18), 5091 (2008).

    Article  CAS  Google Scholar 

  24. E.M. Nadgorny, D.M. Dimiduk, and M.D. Uchic: Size effects in LiF micron-scale single crystals of low dislocation density. J. Mater. Res. 23(11), 2829 (2008).

    Article  CAS  Google Scholar 

  25. S. Shim, H. Bei, M.K. Miller, G.M. Pharr, and E.P. George: Effects of focused-ion-beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater. 57(2), 503 (2009).

    Article  CAS  Google Scholar 

  26. C. Motz, T. Schoberl, and R. Pippan: Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater. 53(15), 4269 (2005).

    Article  CAS  Google Scholar 

  27. S.G. Epstein and O.N. Carlson: Elastic constants of nickel-copper alloy single crystals. Acta Metall. 13(5), 487 (1965).

    Article  CAS  Google Scholar 

  28. H.N. Ledbetter and E.R. Naimon: Elastic properties of copper. J. Phys. Chem. Ref. Data 3(4), 897 (1974).

    Article  CAS  Google Scholar 

  29. E.H. Jacobsen: Elastic spectrum of copper from temperature scattering of x-rays. Phys. Rev. 94(5), 1420 (1954).

    Google Scholar 

  30. Y. Hiki and A.V. Granato: Anharmonicity in noble metals Higher order elastic constants. Phys. Rev. 144(2), 411 (1966).

    Article  CAS  Google Scholar 

  31. R.F.S. Hearmon: The elastic constants of anisotropic materials. Rev. Mod. Phys. 18(3), 409 (1946).

    Article  CAS  Google Scholar 

  32. R.F.S. Hearmon: The elastic constants of anisotropic materials II. Adv. Phys. 5(19), 323 (1956).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. J. Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, D.E.J., Wilkinson, A.J. & Roberts, S.G. Measuring anisotropy in Young’s modulus of copper using microcantilever testing. Journal of Materials Research 24, 3268–3276 (2009). https://doi.org/10.1557/jmr.2009.0396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0396

Navigation