Skip to main content
Log in

Is there a hexagonal-close-packed (hcp) → face-centered-cubic (fcc) allotropic transformation in mechanically milled Group IVB elements?

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Allotropic hexagonal-close-packed (hcp) → face-centered-cubic (fcc) transformations were reported in Group IVB elements titanium (Ti), zirconium (Zr), and hafnium (Hf) subjected to mechanical milling in a high-energy SPEX shaker mill. Although the transformation was observed in powders milled under regular conditions, no such phase transformation was observed when the powders were milled in an ultrahigh purity environment by placing the powder in a milling container under a high-purity argon atmosphere, which was in turn placed in an argon-filled glove box for milling. From a critical analysis of the results, it was concluded that the hcp → fcc phase transformation was, at least partially, due to pick-up of interstitial impurities by the powder during milling of these powders to the nanocrystalline state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).

    CAS  Google Scholar 

  2. C. Suryanarayana: Nanocrystalline materials. Int. Mater. Rev. 40, 41 (1995).

    Article  CAS  Google Scholar 

  3. H. Gleiter: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).

    CAS  Google Scholar 

  4. C. Suryanarayana: Recent developments in nanostructured materials. Adv. Eng. Mater. 7, 983 (2005).

    Article  CAS  Google Scholar 

  5. Nanostructured Materials, 2nd ed., edited by C.C. Koch (William Andrew, Norwich, NY, 2007).

    Google Scholar 

  6. H. Gleiter: Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today? Acta Mater. 56, 5875 (2008).

    Article  CAS  Google Scholar 

  7. I. Manna, P.P. Chattopadhyay, P. Nandi, F. Banhart, and H.J. Fecht: Formation of face-centered-cubic titanium by mechanical attrition. J. Appl. Phys. 93, 1520 (2003).

    Article  CAS  Google Scholar 

  8. I. Manna, P.P. Chattopadhyay, F. Banhart, and H.J. Fecht: Formation of face-centered-cubic zirconium by mechanical attrition. Appl. Phys. Lett. 81, 4136 (2002).

    Article  CAS  Google Scholar 

  9. U.M.R. Seelam and C. Suryanarayana: Mechanically induced fcc phase formation in nanocrystalline hafnium. J. Appl. Phys. 105, 063524 (2009).

    Article  Google Scholar 

  10. J.Y. Huang, Y.K. Wu, H.Q. Ye, and K. Lu: Allotropic transformation of cobalt induced by ball milling. Nanostruct. Mater. 6, 723 (1995).

    Article  Google Scholar 

  11. J.Y. Huang, Y.K. Wu, and H.Q. Ye: Allotropic transformation of cobalt induced by ball milling. Acta Mater. 44, 1201 (1996).

    Article  CAS  Google Scholar 

  12. L. Bianco Del, C. Ballesteros, J.M. Rojo, and A. Hernando: Magnetically ordered fcc structure at the relaxed grain boundaries of pure nanocrystalline Fe. Phys. Rev. Lett. 81, 4500 (1998).

    Article  Google Scholar 

  13. P.P. Chatterjee, S.K. Pabi, and I. Manna: An allotropic transformation induced by mechanical alloying. J. Appl. Phys. 86, 5912 (1999).

    Article  CAS  Google Scholar 

  14. P.P. Chattopadhyay, S.K. Pabi, and I. Manna: A metastable allotropic transformation in Nb induced by planetary ball milling. Mater. Sci. Eng., A 304306, 424 (2001).

    Article  Google Scholar 

  15. D. Shechtman, van D. Heerden, and D. Josell: FCC titanium in Ti-Al multilayers. Mater. Lett. 20, 329 (1994).

    Article  CAS  Google Scholar 

  16. Van D. Heerden, D. Josell, and D. Shechtman: The formation of F.C.C. titanium in titanium-aluminum multilayers. Acta Mater. 44, 297 (1996).

    Article  Google Scholar 

  17. Binary Alloy Phase Diagrams, edited by T.B. Massalski (ASM International, Materials Park, OH, 1990).

    Google Scholar 

  18. P. Villars and L.D. Calvert: Pearsons Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM International, Materials Park, OH, 1991).

    Google Scholar 

  19. W. Guo, S. Martelli, F. Padella, M. Magini, N. Burgio, E. Paradiso, and U. Franzoni: F.C.C. metastable phase induced in the TiAl system by mechanical alloying of pure elemental powders. Mater. Sci. Forum 8890, 139 (1992).

    Article  Google Scholar 

  20. W. Guo, S. Martelli, N. Burgio, M. Magini, F. Padella, E. Paradiso, and I. Soletta: Mechanical alloying of the TiAl system. J. Mater. Sci. 26, 6190 (1991).

    Article  CAS  Google Scholar 

  21. C. Suryanarayana: Does a disordered -TiAl phase exist in mechanically alloyed TiAl powders? Intermetallics 3, 153 (1995).

    Article  CAS  Google Scholar 

  22. H.J. Fecht, G. Han, Z. Fu, and W.L. Johnson: Metastable phase formation in the ZrAl binary system induced by mechanical alloying. J. Appl. Phys. 67, 1744 (1990).

    Article  CAS  Google Scholar 

  23. Z. Peng, C. Suryanarayana, and F.H. Froes: Mechanical alloying of NbAl powders. Metall. Mater. Trans. A 27, 41 (1996).

    Article  Google Scholar 

  24. R. Banerjee, E.A. Sperling, G.B. Thompson, H.L. Fraser, S. Bose, and P. Ayyub: Lattice expansion in nanocrystalline niobium thin films. Appl. Phys. Lett. 82, 4250 (2003).

    Article  CAS  Google Scholar 

  25. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  26. C. Suryanarayana: Mechanical Alloying and Milling (Dekker, New York, 2004).

    Book  Google Scholar 

  27. T. Klassen, M. Oehring, and R. Bormann: Microscopic mechanisms of metastable phase formation during ball milling of intermetallic TiAl phases. Acta Mater. 45, 3935 (1997).

    Article  CAS  Google Scholar 

  28. C. Suryanarayana and M. Norton Grant: X-Ray Diffraction: A Practical Approach (Plenum Press, New York, 1998).

    Book  Google Scholar 

  29. L. Kaufman: Phase Stability in Metals and Alloys, edited by P.S. Rudman, J. Stringer, and R.I. Jaffee (McGrawHill, New York, 1967)

  30. J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante: Universal features of the equation of state of metals. Phys. Rev. B 29, 2963 (1984).

    Article  CAS  Google Scholar 

  31. H.J. Fecht: Thermodynamic properties and stability of grain boundaries in metals based on the universal equation of state at negative pressure. Acta Metall. Mater. 38, 1927 (1990).

    Article  CAS  Google Scholar 

  32. Y. Wang, C. Suryanarayana, and L. An: Phase transformation in nanometer-sized -alumina by mechanical milling. J. Am. Ceram. Soc. 88, 780 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Challapalli Suryanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seelam, U.M.R., Barkhordarian, G. & Suryanarayana, C. Is there a hexagonal-close-packed (hcp) → face-centered-cubic (fcc) allotropic transformation in mechanically milled Group IVB elements?. Journal of Materials Research 24, 3454–3461 (2009). https://doi.org/10.1557/jmr.2009.0423

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0423

Navigation