Skip to main content
Log in

Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fracture surfaces of Zr-based bulk metallic glasses of various compositions tested in the as-cast and annealed conditions were analyzed using scanning electron microscopy. The tougher samples have shown highly jagged patterns at the beginning stage of crack propagation, and the length and roughness of this jagged pattern correlate well with the measured fracture toughness values. These jagged patterns, the main source of energy dissipation in the sample, are attributed to the formation of shear bands inside the sample. This observation provides strong evidence of significant “plastic zone” screening at the crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Conner, W.L. Johnson, N.E. Paton, W.D. Nix Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, (2) 904 (2003)

    CAS  Google Scholar 

  2. R.D. Conner, Y. Li, W.D. Nix, W.D. Johnson Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater. 52, 2429 (2004)

    CAS  Google Scholar 

  3. M.F. Ashby, A.L. Greer Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006)

    CAS  Google Scholar 

  4. A. Peker, W.L. Johnson A highly processable metallic-glass Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 (1993)

    Google Scholar 

  5. P. Lowhaphandu, J.J. Lewandowski Fracture toughness and notched toughness of bulk amorphous alloy: Zr–Ti–Ni–Cu–Be. Scr. Mater. 38, 1811 (1998)

    CAS  Google Scholar 

  6. C.J. Gilbert, V. Schroeder, R.O. Ritchie Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall. Mater. Trans. A 30, 1739 (1999)

    Google Scholar 

  7. D. Suh, R.H. Dauskardt Effects of open-volume regions on relaxation time-scales and fracture behavior of a Zr–Ti–Ni–Cu–Be bulk metallic glass. J. Non-Cryst. Solids 317, 181 (2003)

    CAS  Google Scholar 

  8. D. Suh, R.H. Dauskardt Flow and fracture in Zr-based bulk metallic glasses. Ann. Chim. Sci. Mat. 27, 25 (2002)

    CAS  Google Scholar 

  9. R.D. Conner, A.J. Rosakis, W.L. Johnson, D.M. Owen Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scr. Mater. 37, 1373 (1997)

    CAS  Google Scholar 

  10. K.M. Flores, R.H. Dauskardt Enhanced toughness due to stable crack tip damage zones in bulk metallic glasses. Scr. Mater. 41, 937 (1999)

    CAS  Google Scholar 

  11. W.L. Johnson Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, (10) 42 (1999)

    CAS  Google Scholar 

  12. P. Tandaiya, R. Narasimhan, U. Ramamurty Mode I crack tip fields in amorphous materials with application to metallic glasses. Acta Mater. 55, 6541 (2007)

    CAS  Google Scholar 

  13. C.P. Kim, J.Y. Suh, A. Wiest, M.L. Lind, R.D. Conner, W.L. Johnson Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses. Scr. Mater. 60, 80 (2009)

    CAS  Google Scholar 

  14. X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, J.J. Lewandowski Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005)

    CAS  Google Scholar 

  15. J.J. Lewandowski, W.H. Wang, A.L. Greer Intrinsic plasticity or brittleness of metallic glass. Philos. Mag. Lett. 85, 77 (2005)

    CAS  Google Scholar 

  16. C.J. Gilbert, R.O. Ritchie, W.L. Johnson Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 71, 476 (1997)

    CAS  Google Scholar 

  17. A. Tatschl, C.J. Gilbert, V. Schroeder, R. Pippan, R.O. Ritchie Stereophotogrammetric investigation of overload and cyclic fatigue fracture surface morphologies in a Zr–Ti–Ni–Cu–Be bulk metallic glass. J. Mater. Res. 15, 898 (2000)

    CAS  Google Scholar 

  18. C.A. Schuh, T.C. Hufnagel, U. Ramamurty Overview No. 144—Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007)

    CAS  Google Scholar 

  19. A.S. Argon, M. Salama Mechanism of fracture in glassy materials capable of some inelastic deformation. Mater. Sci. Eng. 23, 219 (1976)

    CAS  Google Scholar 

  20. G.T. Hahn, A.R. Rosenfield Local yielding and extension of a crack under plane stress. Acta Metall. 13, 293 (1965)

    Google Scholar 

  21. J.H. Schneibel, J.A. Horton, P.R. Munroe Fracture toughness, fracture morphology and crack-tip plastic zone of a Zr-based bulk amorphous alloy. Metall. Mater. Trans. A 32, 2819 (2001)

    Google Scholar 

  22. F. Spaepen, D. Turnbull Mechanism for flow and fracture of metallic glasses. Scr. Metall. 8, 563 (1974)

    CAS  Google Scholar 

  23. H.J. Leamy, H.S. Chen, T.T. Wang Plastic-flow and fracture of metallic glass. Metall. Trans. 3, 699 (1972)

    CAS  Google Scholar 

  24. A.T. Alpas, L. Edwards, C.N. Reid Fracture and fatigue-crack propagation in a nickel-base metallic-glass. Metall. Trans. A 20, 1395 (1989)

    Google Scholar 

  25. Z.F. Zhang, J. Eckert, L. Schultz Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003)

    CAS  Google Scholar 

  26. L.A. Davis Fracture toughnesses of metallic glasses. Metall. Trans. A 10, 235 (1979)

    Google Scholar 

  27. P. Lowhaphandu, L.A. Ludrosky, S.L. Montgomery, J.J. Lewandowski Deformation and fracture toughness of a bulk amorphous Zr–Ti–Ni–Cu–Be alloy. Intermetallics 8, 487 (2000)

    CAS  Google Scholar 

  28. N. Nagendra, U. Ramamurty, T.T. Goh, Y. Li Effect of crystallinity on the impact toughness of a La-based bulk metallic glass. Acta Mater. 48, 2603 (2000)

    CAS  Google Scholar 

  29. C.J. Gilbert, J.M. Lippmann, R.O. Ritchie Fatigue of a Zr–Ti–Cu–Ni–Be bulk amorphous metal: Stress/life and crack-growth behavior. Scr. Mater. 38, 537 (1998)

    CAS  Google Scholar 

  30. P.A. Hess, R.H. Dauskardt Mechanisms of elevated temperature fatigue crack growth in Zr–Ti–Cu–Ni–Be bulk metallic glass. Acta Mater. 52, 3525 (2004)

    CAS  Google Scholar 

  31. H. Gao 3-dimensional slightly nonplanar cracks. J. Appl. Mech. 59, 335 (1992)

    Google Scholar 

  32. B. Cotterell, J.R. Rice Slightly curved or kinked cracks. Int. J. Fract. 16, 155 (1980)

    Google Scholar 

  33. T.L. Anderson Fracture Toughness Testing of Metals, Fracture Mechanics: Fundamentals and Applications 1st ed. (CRC Press, Boca Raton, FL 1991) 431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dale Conner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, JY., Conner, R.D., Kim, P.C. et al. Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses. Journal of Materials Research 25, 982–990 (2010). https://doi.org/10.1557/JMR.2010.0112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0112

Navigation