Skip to main content
Log in

Spectroscopic analysis of tungsten oxide thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present a detailed study of the morphology and composition of tungsten oxide (WO3) thin films, grown by radio frequency magnetron reactive sputtering at substrate temperatures varied from room temperature (RT) to 500 °C, using infrared (IR) absorption, Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). This work includes valuable new far-IR results about structural changes in microcrystalline WO3. Both IR absorption and Raman techniques reveal an amorphous sample grown at RT and initial crystallization into monoclinic structures for samples grown at temperatures between 100 and 300 °C. The Raman spectra of the samples grown at high temperatures indicate, apart from the monoclinic structure, a strain effect, with a distribution revealed by confocal Raman mapping. XPS indicates that the film surface maintains the stoichiometry WOx, with a value of x slightly greater than 3 at RT due to oxygen contamination, which decreases with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Gavrilyuk, B.P. Zakharchenya, and F.A. Chudnovskii: Photo-chromism in WO3 thin films Electrochim. Acta 44, 3027 (1999).

    Article  CAS  Google Scholar 

  2. S.K. Deb: Optical and photoelectric properties and color centers in thin films of WO3Philos. Mag. 17, 801 (1973).

    Article  Google Scholar 

  3. C.S. Blackman and L.P. Parkin: Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3 and WO3_x thin films from reaction of WCl6 with O-containing solvents and their photochromic and electrochromic properties Chem. Mater. 17, 1583 (2005).

    Article  CAS  Google Scholar 

  4. S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, and A.C. Dillon: Crystalline WO3 nanoparticles for highly improved electrochromic applications Adv. Mater. 18, 763 (2006)

    Article  CAS  Google Scholar 

  5. S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky, and E.W. McFarland: Enhancement of photocatalytic and electro-chromic properties of electrochemically fabricated mesoporous WO3 thin films Adv. Mater. 15, 1269 (2003).

    Article  CAS  Google Scholar 

  6. W. Cheng, E. Baudrin, B. Dunn, and J.I. Zink: Synthesis and electrochromic properties of mesoporous tungsten oxide J. Mater. Chem. 11, 92 (2001).

    Article  CAS  Google Scholar 

  7. L. Zhou, Q. Ren, X. Zhou, J. Tang, Z. Chen, and C. Yu: Comprehensive understanding on the formation of highly ordered mesoporous tungsten oxides by x-ray diffraction and Raman spectroscopy Microporous Mesoporous Mater. 109, 248 (2008).

    Article  CAS  Google Scholar 

  8. P.M.A. Durrani, E.E. Khawaja, M.A. Salim, M.F. Al-Kuhaili, and A.M. Al-Shukri: Effect of preparation conditions on the optical and fhermochromic properties of thin films of tungsten oxide Sol. Enemy Mater. Sol. Cells 71, 313 (2002).

    Article  CAS  Google Scholar 

  9. S.H. Lee, K.M. Cheong, P. Liu, D. Smith, C.E. Tracy, A. Mascarenhas, J.R. Pitts, and S.K. Deb: Raman spectroscopic studies of gaso-chromic a-WO3 thin films Electrochim. Acta 46, 1995 (2001).

    Article  CAS  Google Scholar 

  10. S.M. Kanan, O.M. El-Kadri, L.A. Abu-Yousef, and M.C. Kanan: Semiconducting metal oxide based sensors for selective gas pollutant detection Sensors 9, 8158 (2009).

    CAS  Google Scholar 

  11. D.E. Williams: Semiconducting oxides as gas-sensitive resistors Sens. Actuators. B 57, 1 (1999).

    CAS  Google Scholar 

  12. A. Kolmakov and M. Maskovits: Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures Annu. Rev. Mater. Res. 34, 151 (2004).

    CAS  Google Scholar 

  13. W.H. Tao and C.H. Tsai: H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining Sens. Actuators. B 81, 237 (2002).

    CAS  Google Scholar 

  14. M. Stankova, X. Vilanova, J. Calderer, E. Llobet, J. Brezmes, I. Gracia, C. Cane, and X. Correig: Sensitivity and selectivity improvement of RF sputtered WO3 microhotplate gas sensors Sens. Actuators. B 113, 241 (2006).

    CAS  Google Scholar 

  15. C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, and U. Becker: Structural stability and phase transitions in WO3 thin films J. Phys. Chem. B 110, 10430 (2006).

    CAS  Google Scholar 

  16. E. Salje: The orfhorhombic phase of WO3Acta Crystallogr:, Sect. B: Struct Sci. 33, 574 (1977).

    Google Scholar 

  17. S. Tanisaki: Crystal structure of monoclinic tungsten trioxide at room temperature J. Phys. Soc. Jpn. 15, 573 (1960).

    CAS  Google Scholar 

  18. P.M. Woodward, A.W. Sleight, and T. Vogt: Ferroelectric tungsten trioxide J. Solid State Chem. 131, 9 (1997).

    CAS  Google Scholar 

  19. M. Boulova, N. Rosman, P. Bouvier, and G. Lucazeau: High-pressure Raman study of microcrystalline WO3 tungsten oxide J. Phys. Condens. Matter 14, 5849 (2002).

    CAS  Google Scholar 

  20. A.G. Souza Filho, P.T.C. Freire, O. Pilla, A.P. Ayala, J. Mendes Filho, P.E.A. Melo, V.N. Freire, and V. Lemos: Pressure effects in Raman spectrum of WO3 microcrystals Phys. Rev. B: Condens Matter 62, 3699 (2000).

    Article  CAS  Google Scholar 

  21. E. Salje: Lattice dynamics of WO3Acta Crystallogr., Sect. A: Found Crvstalloer. 31, 360 (1975).

    Article  Google Scholar 

  22. S.K. Gullapalli, F.S. Manciu, J.L. Enriquez, and C.V. Ramana: Tungsten oxide (WO3) thin films for application in advanced energy systems J. Vac. Sci. Technol. A 28, 824 (2010).

    Article  CAS  Google Scholar 

  23. K. Ohwada: Lattice vibrations of 5-uranium and tungsten trioxides Spectrochim. Acta, Part A 26A, 1035 (1969).

    Google Scholar 

  24. B. Pecquenard, H. Lecacheux, J. Livage, and C. Julien: Ortho-rhombic WO3 formed via a T-stabilized WO3 H2O phase J. Solid State Chem. 135, 159 (1998).

    Article  CAS  Google Scholar 

  25. H-T. Sun, C. Cantalini, L. Lozzi, M. Passacantando, S. Santucci, and M. Pelino: Microstructural effect on NO2 sensitivity of WO3 thin film gas sensors Part 1. Thin film devices, sensors and actuators. Thin Solid Films 287, 258 (1996).

    Article  CAS  Google Scholar 

  26. Y.S. Kim: Thermal treatment effects on the material and gas-sensing properties of room-temperature tungsten oxide nanorod sensors Sens. Actuators. B 137, 297 (2009).

    Article  Google Scholar 

  27. C.D. Wagner, W.M. Riggs, L.E. Davis, and J.E. Moueler: Handbook of X-ray Photoelectron Spectroscopy, edited by G.E Muilenberg (Perkin-Elmer, Eden Prairie, MN, 1979).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicia S. Manciu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manciu, F.S., Enriquez, J.L., Durrer, W.G. et al. Spectroscopic analysis of tungsten oxide thin films. Journal of Materials Research 25, 2401–2406 (2010). https://doi.org/10.1557/jmr.2010.0294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0294

Navigation