Skip to main content
Log in

Transport properties and microstructure of indium-added cobalt–antimony-based skutterudites

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Indium has attracted much attention as a beneficial addition to cobalt–antimony-based skutterudites as a result of good thermoelectric performance. In this study, as-cast InxCo4Sb12 with x = 0.05, 0.2 were examined using x-ray diffraction analysis and scanning electron microscopy. For x = 0.2 we found, besides the skutterudite main phase, nanometer-sized regions of secondary phases distributed along the grain boundaries, which exhibit substructures. As-cast material with x = 0.05 does not show visible precipitates. We further observed that changing one of the heat treatment parameters of In0.2Co4Sb12 has a major effect on the microstructure and shape of the precipitates, but minor influence on the skutterudite matrix composition. Energy dispersive x-ray spectroscopy analysis by transmission electron microscopy) reveals that indium is to a large extent distributed into the skutterudite structure. Measurements of short-term sintered material confirm that the addition of indium and particularly the modification of the synthesis parameter entails to an enhanced ZT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

REFERENCES

  1. B.C. Sales, D. Mandrus, and R.K. Williams: Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  2. D.T. Morelli, G.P. Meisner, B. Chen, S. Hu, and C. Uher: Cerium filling and doping of cobalt triantimonide. Phys. Rev. B 56, 7376 (1997).

    Article  CAS  Google Scholar 

  3. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher: Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 90, 1864 (2001).

    Article  CAS  Google Scholar 

  4. M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E. Mueller: High temperature transport properties of partially filled CaxCo4Sb12 skutterudites. J. Appl. Phys. 95, 4852 (2004).

    Article  CAS  Google Scholar 

  5. G.S. Nolas, J.L. Cohn, and G.A. Slack: Effect of partial void filling on the lattice thermal conductivity of skutterudites. Phys. Rev. B 58, 164 (1998).

    Article  CAS  Google Scholar 

  6. G.A. Lamberton Jr., S. Bhattacharya, R.T. Littleton IV, M.A. Kaeser, R.H. Tedstrom, T.M. Tritt, J. Yang, and G.S. Nolas: High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett. 80, 598 (2002).

    Article  CAS  Google Scholar 

  7. V.L. Kuznetsov, L.A. Kuznetsova, and D.M. Rowe: Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites. J. Phys. Condens. Matter 15, 5035 (2003).

    Article  CAS  Google Scholar 

  8. B.C. Sales, B.C. Chakoumakos, and D. Mandrus: Thermoelectric properties of thallium-filled skutterudites. Phys. Rev. B 61, 2475 (2000).

    Article  CAS  Google Scholar 

  9. G.S. Nolas, M. Kaeser, R.T. Littleton IV, and T.M. Tritt: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 77, 1855 (2000).

    Article  CAS  Google Scholar 

  10. G.S. Nolas, J. Yang, and H. Takizawa: Transport properties of germanium-filled CoSb3. Appl. Phys. Lett. 84, 5210 (2004).

    Article  CAS  Google Scholar 

  11. T. He, J. Chen, H.D. Rosenfeld, and M.A. Subramanian: Thermoelectric properties of indium-filled skutterudites. Chem. Mater. 18, 759 (2006).

    Article  CAS  Google Scholar 

  12. R. Mallik, C. Stiewe, G. Karpinski, R. Hassdorf, and E. Mueller: Thermoelectric properties of Co4Sb12 skutterudite materials with partial In filling and excess In additions. J. Electron. Mater. 38, 1337 (2009).

    Article  CAS  Google Scholar 

  13. H. Li, X. Tang, Q. Zhang, and C. Uher: High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114 (2009).

    Article  Google Scholar 

  14. A. Grytsiv, P. Rogl, S. Berger, C. Paul, E. Bauer, C. Godart, B. Ni, M.M. Abd-Elmeguid, A. Saccone, R. Ferro, and D. Kaczorowski: Structure and physical properties of the thermoelectric skutterudites EuyFe4-xCoxSb12. Phys. Rev. B 66, 094411 (2002).

    Article  Google Scholar 

  15. A. Sesselmann, R. Hassdorf, K. Kelm, S. Perlt, and E. Mueller: Microstructure study of cobalt–antimony based skutterudites with partial indium filling, in 8th European Conference on Thermoelectrics, Como, 262 (2010).

  16. R.P. Hermann, R. Jin, W. Schweika, F. Grandjean, D. Mandrus, B.C. Sales, and G.J. Long: Einstein oscillators in thallium filled antimony skutterudites. Phys. Rev. Lett. 90, 135505 (2003).

    Article  Google Scholar 

  17. A. Harnwunggmoung, K. Kurosaki, H. Muta, and S. Yamanaka: High-temperature thermoelectric properties of thallium-filled skutterudites. Appl. Phys. Lett. 96, 202107 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Deutsche Forschungsgemeinschaft and the SPP1386 “Nanostrukturierte Thermoelektrika: Theorie, Modellsysteme und kontrollierte Synthese” for funding this research work at the German Aerospace Center (DLR), Cologne, Germany. We thank our cooperation partners, the group of Prof. S. Schlecht (University of Gießen) and the group of Prof. B. Paulus (FU Berlin) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Sesselmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sesselmann, A., Dasgupta, T., Kelm, K. et al. Transport properties and microstructure of indium-added cobalt–antimony-based skutterudites. Journal of Materials Research 26, 1820–1826 (2011). https://doi.org/10.1557/jmr.2011.102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.102

Navigation